	Reg. No.	:
1	Question Pape	r Code: 91253
B.E./B	B.Tech. DEGREE EXAMINAT	TION, NOVEMBER/DECEMBER 2014.
	Sevent	h Semester
	Civil E	ngineering
CE 2401/CI		- DESIGN OF REINFORCED CONCRETE ONRY STRUCTURES
	(Regulation	on 2008/2010)
	ry Structures for B.E. (Part-T	— Design of Reinforced Concrete and Brick lime) Fifth Semester Civil Engineering — on 2009/2010)
Time: Thre	ee hours	Maximum : 100 mark
	Use of relevant BIS standar	16 Design Charts tables are permitted) rds and hand book is permitted. ressary and indicate them clearly)
,		LL questions. $0 \times 2 = 20 \text{ marks}$
1 Differ	rentiate Active and Passive ea	arth pressure.
2. What	is the function of Counterford	ts in a retaining wall?
3. What	are the essential requiremen	ts for an impervious water tank?
	the advantages and disadvan r tank design.	stages of approximate method of analysis in
	will you calculate the load ef tudinal direction?	fects on a stairs waist slab spanning in th
6 What	are the limitations in direct	design method for flat slab?
7. State	the assumptions of yield line	theory.
8. State	upper and lower bound theor	ems.
9. What	are reinforced masonry walls	2
10. What	are the factors affecting the	design of masonry wall buildings?

PART B - (5 × 16 = 80 marks)

11. (a) Design a Cantilever retaining wall to retain earth embankment with a horizontal top 4 m above ground level. Density of earth =18 kN/m³. Angle of internal friction φ=30°. SBC of soil is 200 kN/m³. Take coefficient of friction between soil and concrete as 0.55. Adopt M₂o grade concrete and Fe₄₁₅ HYSD bars.

Or

- (b) Design the stem of a counterfort retaining wall if the height of wall above ground level= 6 m. SBC of soil is 170 kN/m³. Angle of internal friction φ= 32° Density of soil=18 kN/m³. Spacing of counterfort 3 m c/c. Take coefficient of friction between soil and concrete as 0.5. Adopt M₂₀ grade concrete and Fe₅₀₀ HYSD bars.
- 12. (a) Design the Top dome, Ring beam and Cylindrical tank wall of R.C circular tank resting on ground with flexible base and spherical dome for a capacity of 5 Lakhs litres. The depth of storage is to be 4 m allow free board of 200 mm use M₂₀ concrete and Fe₄₁₀ steel.

Or

- (b) A rectangular RCC water tank with an open top is required to store 1 Lakhs litters of water. The inside dimensions of the tank may be taken as 6 m × 4 m. The tank rests on wall on all the four sides. Design the side walls of the tank using M₂₀ grade concrete and Fe₂₀₀ HYSD bars.
- 13. (a) Design a dog legged stair for a building in which the vertical distance between the floors is 3.5 m. The stair hall measures 3.5 m × 5.5. The live load may be taken as 3 kN/m². Use M₂₀ grade concrete and Fe_{0.5} steel.

Or

- (b) Design a reinforced concrete slab culvert for class AA loading for the following data. Clear span = 6 m. Clear width of road ways = 6.8 m. Thickness of wearing coat = 80mm. Width of kerbs = 600 mm. Grade of concrete M₂₀. Grade of steel Feson.
- (a) Explain the guidelines to draw the possible yield patterns and locate the axes of rotations.

Or

(b) Design a rectangular slab of size 4 m × 6m which is simply supported along the edges and has to carry a service live load of 4 kN/m². Assume coefficient of orthotropy = 0.75. Use M₂s Grade concrete and Fe₄15 HYSD bars. The design may be restricted to bending only.

2

91253

	15. (a)	What are the factors to be considered while designing the br with respect to stability and lateral supports on the Explain in detail.	rick masonry structure?
		Or	
	(b)	Design a brick column of height 3.5 m to carry an axial los width of brick column is limited to 460 mm for architect Adopt cement lime mortar of proportion 1:1:6 and first class 10 N/mm ² strength the column may be taken as tensed restri	ural reason. s brick with
*			
			91253