Ques	stion Paper Code :	11186
B.E./B.Tech. DEGRI	EE EXAMINATION, NOVEM	BER/DECEMBER 2012.
	Fourth Semester	
	Civil Engineering	
CE 2253/CE 44/CE 1253	3 A/10111 CE 404/080100020 ENGINEERING	— APPLIED HYDRAULIC
	(Regulation 2008)	
Time : Three hours		Maximum: 100 marks
	Answer ALL questions.	
	PART A — $(10 \times 2 = 20 \text{ mark})$	ks)
1. Define hydraulic mea	an depth.	
2. Define specific energy	y .	
3. Define uniform flow i	in channels.	
4. What are non-erodibl	le channels?	
5. Define transition dep	oth.	
3. What are surges?		
7. What are the types of	f casing in centrifugal pump?	
Define negative slip.		
. What is radial flow tu	ırbine?	
). What is overall efficien		

PART B - (5 × 16 = 80 marks)

11. (a) In flow through a rectangular channel for a certain discharge the Froude's number corresponding to two alternate depths of F_1 and F_2 . Show that $(F_2/F_1) = (2 + F_2^2)/(2 + F_1^2)$.

Or

- (b) Derive the geometrical properties of a most economical triangular channel section.
- (a) Derive the Chezy's formula for discharge through channel. Write the formulas to find out the Constant C.

Or

- (b) A trapezoidal channel is 8 m wide at bed and the depth of flow as 2 m. the bed fall is 0.5 m per km. The side slopes are 1: 1 taking Bazin's constant as 2.35, find the discharge through the channel.
- (a) Derive the dynamic equation of gradually varied flow. Write the assumptions made in it.

Or

- (b) Define hydraulic jump. What are its types? How the energy dissipated? Explain in detail.
- 14. (a) Explain with a neat sketch, the construction details and working principles of a centrifugal pump.

Oı

- (b) Explain with a neat sketch, the construction details and working principles of a reciprocating pump.
- 15. (a) A Kaplan turbine runner is to be designed to develop 9100 kW. The net available head is 5.6 m. If the speed ratio = 2.09, flow ratio = 0.68, overall efficiency 86% and the diameter of the boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine.

Or

- (b) (i) Explain in detail about the main parts of Pelton wheel turbine. (8)
 - (ii) A Pelton wheel is having a mean bucket diameter of 1 m and is running at 1000 rpm. The net head on the Pelton wheel is 700 m. If the side clearance angle is 15° and discharge through nozzle is 0.1 m³/s, find: (1) Power available at the nozzle and (2) hydraulic efficiency of the turbine.

2

11186