| 17 | | | |----|---|-----| | 1 | | | | | | | | | Reg. No. : | | | | | | | - | Question Paper Code: 11181 | | | | Question raper code. 11101 | | | | | | | | B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012. | | | | Third Semester | 2 | | | Civil Engineering | | | | CE 2202/101302/CE 35/CE 1203/10111 CE 305/080100015 — MECHANICS OF FLUIDS | | | | (Regulation 2008) | | | | Time: Three hours Maximum: 100 marks | | | | Answer ALL questions. | | | 0 | Section 2018 and the Property Control of | | | | PART A — $(10 \times 2 = 20 \text{ marks})$ | | | | Differentiate between specific weight and specific gravity of an oil. Professional specific and surface tension. | | | | Define compressibility and surface tension. Define total pressure on a surface and centre of pressure of a surface. | | | | Briefly explain the terms centre of buoyancy and metacentre. | | | | 5. Sketch a pitot tube and explain briefly how it is used to measure the velocity of | | | | a flowing liquid. | | | | Two horizontal plates are placed 15 mm apart, the space between them being
filled with oil of viscosity 15 poise. Calculate the shear stress in the oil, if the
upper plate is moved with a velocity of 3.0 m/sec. | | | | 7. Define the terms Displacement thickness and Momentum thickness. | | | | 8. What are the major and minor energy losses in a pipe line? | | | | Define the term Dimensional Homogeneity. How is it attained in a fluid
equation. | | | | Define the terms Geometric Similarity and Kinematic Similarity. | | | | PART B — $(5 \times 16 = 80 \text{ marks})$ | | | | 11. (a) (i) Calculate the capillary rise in millimetres in a glass tube of 4 mm diameter. When immersed in | - 1 | | | (1) water and (2) mercury. | | | | The temperature of the liquid is 20°C and the values of surface tension of water and mercury at 20°C in contact with air are 0.0735 N/m and 0.51 N/m respectively. The contact angle for water $\theta = 0^{\circ}$ and for mercury $\theta = 130^{\circ}$. Take specific weight of water at 20°C as equal to 9790 N/m° . | | | | | 100 | | | | - | (b) Two pipes of diameter 400 mm and 200 mm are each 300 m long. When the pipes are connected in series the discharge through the pipeline is 0.10m³ (sec, find the loss of head incurred. What would be the loss of head in the system to pass the same total discharge when connected in parallel. Take friction factor = 0.0075 for each other connected. Fig. 5 - (a) (i) State and explain in detail about Buckingham's π-theorem. (8) - (ii) Check the dimensional homogeneity of the following common equations in the field of hydraulics - (1) $Q = Cd.a.\sqrt{2gH}$ and (2) $$v = C\sqrt{m.i}$$. (8) - (b) (i) What is a distorted model? How does it differ from an undistorted model? Mention the advantages and disadvantages of distorted models. (8) - (ii) A spill way model built up to a scale of 1/10 is discharging water with a velocity of 1 m/sec, under a head of 100 mm. Find the velocity of water of the proto type, if the head of water over the prototype is 5.5 meters. 11181