	Reg. No.:
	Question Paper Code: 10216
	B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.
	Third Semester
	Civil Engineering
(CE 2202/101302/CE 35/CE 1203/10111 CE 305/080100015 — MECHANICS OF FLUIDS
	(Regulation 2008)
Tim	e: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	Distinguish between a real fluid and an ideal fluid.
2.	The surface tension of water in contact with air is 0.0725 N/m. The difference in pressure between inside and outside of water droplet is 250 N/m². What is the diameter of the droplet?
3.	With the help of a sketch, show the relationship between absolute pressure and gauge pressure.
4.	Can there be flow across a streamline? Why?
5.	State the assumptions involved in the derivation of Bernoulli's equation.
6,	Explain Couette flow.
7.	Differentiate between 'drag' and 'lift'.
	A 200 mm diameter pipe 30 km long transports oil from a tanker to the shore at 0.01 m ³ /s. Find the Reynold's number to classify the flow. Take dynamic viscosity of the fluid = 0.1 Ns/m ² and mass density = 900 kg/m ³ for oil.
9.	Define scale ratio.
10.	Define kinematic similarity.

	PART B — (5	× 16 = 80 marks)		
II. (a)	 Show the rheological cla fluid giving an example. 	ssification of fluids and define each type of		
	towed vertically up betw 0.2 m/s. The inner plate plates. The gap between t	Two large vertical plates parallel to each other are 2 mm apart. A thin flat plate 1 mm thick, 0.6 m × 0.6 m size and 25 N weight is towed vertically up between the two large plates with a velocity of 0.2 m/s. The inner plate is equidistant from the two stationary plates. The gap between the large plates is filled with oil of viscosity 1.6 poise. Calculate the vertical force required.		
G	in) The capillary rise in a gle	ass tube is to be restricted to 3 mm. What		
	0			
(b) (i)	In a pipe of diameter 300	mm, the velocity distribution is parabolic		
	y = 50 mm and y = 100 8.5 poise. (Hint: To fine boundary conditions v = 0	slocity gradients and shear stresses at mm. Take dynamic viscosity of fluid as d the coefficients a, b and c, use the at y = 0; v = 1.2 m/s at y = 150 mm and		
	$\frac{dc}{dy} = 0 \text{ at y = 150 mm.})$	(10)		
(ii)	of fluids.	esponsible for the viscosity of a fluid. apperature and pressure on the viscosity (6)		
12. (a) (i)	Match the following:	745		
2	(1) U-tube manometer	(A) Moderately low pressures		
	(2) Single tube manometer	rs (B) Negative pressures		
	(3) Inverted U- tube manometers	(C) High pressures		
	(4) U-tube differential manometer	(D) Differences in pressure between two points		
(ii)	The water level in a canal is at 60° to the bed. The tipping a height of 1 m from the be reaches a maximum value of	regulated by a flat tipper gate inclined takes place about a fulcrum placed at ed when the water level in the canal H. Determine H		
(iii)	A piece of metal weighing 1 5	N in air is found to weigh 1.1 N when s its volume and what is its specific		
		(4)		
	Or			
	2	10216		

		(b)	(i)	Differentiate between the following:	
		100	100	(1) Steady flow and uniform flow	4
				(2) Laminar flow and turbulent flow	$(2 \times 3 = 6)$
			(ii)	A three dimensional flow field is given by	(# 4.0 - 0)
				$V = 2x^{2}y\vec{i} + 3y^{2}z\vec{j} - (4xz + 3yz^{2})\vec{k}.$	A CONTRACTOR OF THE PARTY OF TH
				Show that it is a case of possible steady, incompressi	bla fluid flam
				and the work of possible awardy, incompressi	(4)
			(iii)	Explain a Pitot-Static tube with a sketch. How do the flow velocity at any point using a Pitot-Static tube	
, 1	13.	(a)	(i)	Water is flowing through a tapering pipe having dia and 200 mm at sections 1 and 2 respectively. The dis	
				the pipe is 400 litres per minute. The section 1 is 10	m above datum
				and section 2 is 8 m above datum. Find the pressur the pressure at section 1 is 400 kN/m ² .	e at section 2 if (6)
			(ii)	A venturimeter of diameters 200 mm and 100 m	
				throat respectively is installed in a vertical pipe	carrying oil of
				specific gravity 0.8. The inlet is 1.5 m above the tigauges installed at the throat and inlet indica difference of 9.81 kN/m ² .	
				(1) Determine the discharge through the pipe	
	429			(2) If the throat and inlet are connected to a U-to containing mercury instead of the pressure g difference in mercury levels in the two lin manometer.	auges, find the '
				Or	
		(b)	(i)	An oil of viscosity 0.096 Nsm-2 and specific gravity	of 1 59 flows
				through a horizontal pipe of 50 mm diameter with a of 6 kN/m ² per metre length of pipe. Determine	
				(1) Rate of flow	
				(2) The shear stress at the pipe wall	
				(3) The power required for 100 m length of the pi	
			en.	the flow.	(12)
			(ii)	Explain Plane Poiseuille flow and show the velocity such a flow.	distribution is (4)

				3	10216

