SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY COURSE FILE (UNIVERSITY QUESTIONS)

WWW.Vidyarthiplus.com

Reg. No.:

## Question Paper Code: 27092

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Civil Engineering

CE 6302 — MECHANICS OF SOLIDS

(Common to Environmental Engineering)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- What is meant by Poisson's ratio? Which material has the higher value of Poisson's ratio?
- Derive an expression for strain energy stored in a prismatic bar subjected to an axial load.
- 3. How bending moment, shear force and intensity of loadings are related?
- 4. Define the term 'moment of resistance'.
- 5. What are the advantages of Macaulay's method over double integration method for beam deflection analysis?
- 6. A cantilever of span 1.8 m is carrying a point load at the free end. Find the deflection at the free end, if the slope at the free end is 1°.
- 7. Write an expression for stain energy stored in a shaft of uniform section subjected to torsion.
- Mention the uses of springs.
- 9. What are principal planes?
- 10. What are the advantages of method of sections over method of joints in finding the forces in the members of a pin-jointed truss?

## PART B — $(5 \times 16 = 80 \text{ marks})$

11. A composite bar is made with a copper flat of size  $50 \text{ mm} \times 30 \text{ mm}$  and a steel flat of  $50~\mathrm{mm} \times 40~\mathrm{mm}$  of length  $500~\mathrm{mm}$  each placed one over the other. Find the stress induced in the material, when the composite bar is subjected to an increase in temperature of 90°C. Take coefficient of thermal expansion of steel as 12 × 10-6/ °C and that of copper as  $18 \times 10^{-6}$  °C, Modulus of elasticity of steel = 200 GPa and Modulus of elasticity of copper = 100 GPa.

Or

- A thin cylindrical shell, 2 m long has 800 mm internal diameter and 10mm thickness. If the shell is subjected to an internal pressure of 1.5 MPa, find
  - (i) the hoop and longitudinal stresses developed,
  - (ii) maximum shear stress induced and
  - (iii) the changes in diameter, length and volume. Take modulus of elasticity of the wall material as 205 GPa and Poisson's ratio as 0.3.
- 12. An overhanging beam ABC of length 8 m is simply supported at B and C over a span of 6 m and the portion AB overhangs by 2 m. Draw the shearing force and bending moment diagrams and determine the point of contra-flexure if it is subjected to uniformly distributed loads of 3 kN/m over the portion AB and 4 kN/m over the portion BC.

Or

- A channel section made with 120 mm × 10 mm horizontal flanges and (b) 160 mm × 10 mm vertical web is subjected to a vertical shearing force of 120 kN. Draw the shear stress distribution diagram across the section.
- A horizontal beam of uniform section and 6 m long is simply supported at 13. its ends. The beam is subjected to a uniformly distributed load of 12 kN/m over the right half span. Find the maximum deflection in the beam using Macaulay's method.

Or

- A cantilever of span 4 m carries two point loads 10 kN and 8 kN at mid span and free end respectively. Determine the slope and deflection of the cantilever at the free end using conjugate beam method. Assume EI is uniform throughout.
- A shaft is required to transmit a power of 210 kW at 200 rpm. The 14. maximum torque may be 1.5 times the mean torque. The shear stress in the shaft should not to exceed 45 N/mm2 and the twist 10 per metre length. Determine the diameter required if
  - (i) the shaft is solid
  - the shaft is hollow with external diameter twice the internal diameter. Take modulus of rigidity = 80 kN/mm<sup>2</sup>.

27092

- (b) A bumper is to be designed to arrest a wagon weighing 500 kN moving at 18 km/hour. Size of the buffer springs available are having diameter 30 mm, mean radius 100 mm, number of turns 18, modulus of rigidity 80 kN/m² and maximum compression permitted is 200 mm. Find the number of springs required for the buffer.
- 15. (a) The stresses on two mutually perpendicular planes through a point on a body are 30 MPa and 20 MPa both tensile, along with a shear stress of 15 MPa. Find
  - (i) the position of principal planes and stresses across them.
  - (ii) the planes of maximum shear stress
  - (iii) the normal and tangential stress on the plane of maximum shear stress.

Or

(b) Analyze the cantilevered truss shown in Fig. Q.15(b) by method of sections.

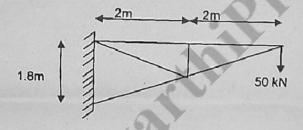



Fig. Q. 15(b)

