MA2211 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS MAY/JUNE 2016

PART -A

1. Form the partial differential equations of all planes passing through the origin.
2. Find the complete integral of $\sqrt{p}+\sqrt{q}=1$
3. If If $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n x)$ in $(-\pi, \pi)$, deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$
4. State TRUE or FALSE: Fourier series of period 20 for the function $f(x)=x \cdot \cos (x)$ in the interval $(-10,10)$ contains only sine terms. Justify your answer.
5. Write down the initial and boundary conditions for the boundary value problem when a string of length I is tightly fastened on both ends and the midpoint of the string is taken to height of k are released from rest.
6. The ends A and B of a rod of length 20 cm have their temperature kept at $10^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. Find the steady state temperature distribution on the rod.
7. If $F(s)$ is the Fourier transform of $f(x)$, obtain the Fourier transform of $f(x-2)+f(x+2)$.
8. Given that $F_{S}\{f(x)\}=\frac{s}{s^{2}+a^{2}}$, hence find $F_{C}\{x . f(x)\}$
9. If $Z\left\{n^{2}\right\}=\frac{z^{2}+z}{(z-1)^{3}}$, then find $Z(n+1)^{2}$.
10. State damping rule related to Z transform and then find $Z\left(n \cdot a^{n}\right)$.

PART - B

11. (a) (i) Find the general solution of the equation $x\left(z^{2}-y^{2}\right) \frac{\partial z}{\partial x}+x\left(z^{2}-y^{2}\right) \frac{\partial z}{\partial y}=z\left(y^{2}-x^{2}\right)$.
(ii) Solve $\left(D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) z=\sin (x+2 y)+3 e^{2 x+y}$.
(OR)
(b) (i) Form the partial differential equations by eliminating the arbitrary function $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
(ii) Obtain the complete integral of $p^{2}+x^{2} y^{2} q^{2}=x^{2} z^{2}$.
12. (a) (i) Find the fourier series for $f(x)=\left\{\begin{array}{l}-x,-\pi<x<0 \\ x, 0<x<\pi\end{array}\right.$. Hence deduce the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$

Find the Fourier series up to second harmonic for $\mathrm{y}=\mathrm{f}(\mathrm{x})$ from the following table.
(ii)

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$y=f(x)$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

(b)(i) Find the half range Fourier cosine series expansion for the function $f(x)=x$ in $0<x<l$. Hence deduce the sum of the series $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\cdots=\frac{\pi^{4}}{96}$
(ii) Find the complex form of the Fourier series of $f(x)=e^{-x},-1<x<1$.
13. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially displace to the form 2. $\sin \left(\frac{3 \pi x}{1}\right) \cdot \cos \left(\frac{2 \pi x}{1}\right)$ any time t .
(OR)
(b) A rectangular plate is bounded by the lines $x=0 ; x=a ; y=0$ and $y=b$ and the edge temperatures are
$u(x, 0)=10$. $\sin \left(\frac{3 \pi x}{a}\right)_{+8} \sin \left(\frac{5 \pi x}{a}\right) ; u(0, y)=0 ; u(x, b)=0$ and $u(a, y)=0$. Find the steady state temperature distribution $u(x, y)$ at any point of the plate.
14. (a) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-x^{2},|x|<1 \\ 0,|x| \geq 1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin (\xi)-s \cdot \cos (s)}{s^{3}} \cdot \cos \left(\frac{s}{2}\right) d s$
(ii) Find the Fourier sine transform of $f(x)=e^{-a x}$ and hence find Fourier sine transform $\overline{a^{2}+x^{2}}$
(OR)
(b) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x| \geq a\end{array}\right.$. Hence deduce that $\int_{0}^{\infty} \frac{\sin x}{x} d x$
(ii) Find the Fourier Cosine transform of $f(x)=e^{-a x}$. Hence evaluate the following: $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
15. (a) (i) Derive a difference equation by eliminating the constants from $y_{n}=(A+B n) 3^{n}$.
(ii) Use convolution theorem to find the inverse Z transform of $\frac{z^{2}}{(z-1 / 2)(z-1 / 4)}$.
(OR)
(b) (i) State initial value theorem. Use it to find u_{0}, u_{1}, u_{2} and u_{3}, where $U(z)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}}$.
(ii) Solve the equation $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ given that $\mathrm{y}_{0}=0$ and $\mathrm{y}_{1}=0$.

