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MA2211 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS MAY/JUNE 2016 

PART –A 

1. Form the partial differential equations of all planes passing through the origin. 

2. Find the complete integral of 1 qp  
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4. State TRUE or FALSE: Fourier series of period 20 for the function f(x) =x. cos(x) in the interval (-10, 10) 

contains only sine terms.  Justify your answer. 

5. Write down the initial and boundary conditions for the boundary value problem when a string of length l is 

tightly fastened on both ends and the midpoint of the string is taken to height of k are released from rest. 

6. The ends A and B of a rod of length 20cm have their temperature kept at 10
0
C and 50

0
C respectively.  Find 

the steady state temperature distribution on the rod. 

7. If F(s) is the Fourier transform of f(x), obtain the Fourier transform of f(x-2)+f(x+2). 

8. Given that 
2

a
2

s

s
)}x(f{SF


 , hence find )}x(f.x{CF  

9. If 
3

)1z(

z
2

z
}

2
n{Z




 , then find Z(n+1)

2
. 

10. State damping rule related to Z transform and then find Z(n.a
n
). 

PART – B 

11. (a) (i) Find the general solution of the equation )
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(ii) Solve (D
3
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(OR) 

(b) (i) Form the partial differential equations by eliminating the arbitrary function f(x+y+z, x
2
+y

2
+z

2
)=0. 
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12. (a) (i) Find the fourier series for 
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(ii) 

Find the Fourier series up to second harmonic for y=f(x) from the following table. 

x 0 π/ϯ Ϯπ/ϯ π ϰπ/ϯ ϱπ/ϯ Ϯπ 

y=f(x) 
1.0 1.4 1.9 1.7 1.5 1.2 1.0 

(OR) 
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(b)(i) Find the half range Fourier cosine series expansion for the function f(x) =x in 0<x<l.  Hence deduce 

the sum of the series 
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(ii) Find the complex form of the Fourier series of f(x) =e-x, -1<x<1. 

13. (a)  A tightly stretched string with fixed end points x=0 and x=l is initially displace to the form 
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and then released.  Find the displacement of the string at any distance x from one end at 

any time t. 

(OR) 

(b) A rectangular plate is bounded by the lines x=0; x=a; y=0 and y=b and the edge temperatures are                   

u(x,0)=10.






 

a

x3
s in

+8






 

a

x5
s in

; u(0,y)=0; u(x,b)=0 and u(a,y)=0.  Find the steady state temperature distribution 

u(x,y) at any point of the plate. 

14. (a) (i) Find the Fourier transform of 
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(ii) Find the Fourier sine transform of f(x) = e-ax and hence find Fourier sine transform 
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(OR) 

(b) (i) Find the Fourier transform of 
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(ii) Find the Fourier Cosine transform of f(x) = e
-ax

.  Hence evaluate the following: 


0 )
2

b
2

x)(
2

a
2

x(

dx

 

15. (a) (i) Derive a difference equation by eliminating the constants from yn=(A+Bn)3
n
. 

(ii) Use convolution theorem to find the inverse Z transform of
)4/1z)(2/1z(
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(b) (i) State initial value theorem.  Use it to find u0, u1, u2 and u3, where U (z) = 
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(ii) Solve the equation  n
nnn yyy 296 12    given that y0=0 and y1=0. 


