MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS APR/MAY 2015

PART - A

1. Form the partial differential equation by eliminating the arbitrary constants a and b from $\log (a z-1)=x+a y+b$.
2. Find the complete solution of $q=2 p x$.
3. The instantaneous current I at time t of an alternating current wave is given by $I=I_{1} \sin \left(w t+\alpha_{1}\right)+I_{3} \sin \left(\beta w t+\alpha_{3}\right)+I_{5} \sin \left(\beta w t+\alpha_{5}\right)+\cdots$. Find the effective value of the current ' I '.
4. If the fourier series of the function $f(x)=x,-\pi<x<\pi$ with period 2π is given by $f(x)=2\left(\sin x-\frac{\sin (2 x)}{2}+\frac{\sin (\beta x)}{3}-\frac{\sin (4 x)}{4}+\cdots\right)$, then find the sum of the series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$
5. Classify the partial differential equation $\left(1-x^{2}\right) Z_{x x}-2 x y Z_{x y}+\left(1-y^{2}\right) Z_{y y}+x Z_{x}+3 x^{2} y z_{y}-2 z=0$.
6. A rod 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. Find this steady state temperature in the rod.
7. If the Fourier transform of $f(x)$ is $F[f(x)]=F(s)$, then show that $F[f(x-a)]=e^{i a s} . F(s)$.
8. Find the fourier sine transform of $1 / x$.
9. If $Z[X(n)]=X(z)$, then show that $Z\left[a^{n} \cdot x(n)\right]=X(z / a)$.
10. State the convolution theorem on Z-Transforms.

PART- B

11. (a) (I) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$.
(ii) Solve $\left(D^{2}-3 D D^{\prime}+2 D^{\prime 2}\right) z=(2+4 x) e^{x+2 y}$.
(OR)
(b) (i) Obtain the complete solution of $p^{2}+x^{2} y^{2} q^{2}=x^{2} z^{2}$.
(ii) Solve $z=p x+q y+p^{2} q^{2}$ and obtain its singular solution.
12. (a) (i) Find the half range sine series of $f(x)=\left\{\begin{array}{l}x, 0<x<\pi / 2 \\ \pi-x, \pi / 2<x<\pi\end{array}\right.$
(ii) Find the complex form of the Fourier series of $f(x)=e^{-x}$ in $-1<x<1$.
(OR)
(b) (i) Find the Fourier series of $f(x)=|\sin x|$ in $-\pi<x<\pi$ of periodicity 2π.
(ii) Compute upto the first three harmonics of the Fourier series of $f(x)$ given by the following table:

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$y=f(x)$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

13. (a) Solve $\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(0, t)=0=u(1, t), t \geq 0 ; u(x, 0)=\left\{\begin{array}{l}x, 0 \leq x \leq 1 / 2 \\ 1-x, l / 2 \leq x \leq 1\end{array}\right.$.
(OR)
(b) A uniform string is stretched and fastened to two points ' 1 ' apart. Motion is started by displacing the string into the form of the curve $y=k x(l-x)$ and then released from this position at time $t=0$. Derive the expression for the displacement of any point of the string at a distance x from one end at time t.
14. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x| \geq a\end{array}\right.$. Hence deduce that (i) $\int_{0}^{\infty} \frac{\operatorname{sint}}{t} d t=\frac{\pi}{2}$. (ii) $\int_{0}^{\infty}\left(\frac{\operatorname{sint}}{t}\right)^{2} d t=\frac{\pi}{2}$.
(b) (i) Show that $\mathrm{e}^{-\mathrm{x}^{2} / 2}$ is self reciprocal under Fourier Transform by finding the Fourier transform of $e^{-a^{2} x^{2}}$.
(ii) Find the Fourier cosine transform of $\mathrm{x}^{\mathrm{n}-1}$.
15. (a) (i) Find $Z\left[r^{n} \cos (n \theta)\right]$ and $Z^{-1}\left[\left(1-a z^{-1}\right)^{-2}\right]$.
(ii) Using convolution theorem, find $Z^{-1}\left[\frac{z^{2}}{(z-1 / 2)(z-1 / 4)}\right]$
(OR)
(b) (i) Using Z-transform, solve the difference equation $x(n+2)-3 x(n+1)+2 x(n)=0$ given that $x(0)=0, x(1)=1$.
(ii) Using residue method, find $Z^{-1}\left[\frac{z}{z^{2}-2 z+2}\right]$.
