MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS NOV/DEC 2015

PART -A

1. Construct the partial differential equation of all spheres whose centres lie on the Z-axis, by the elimination of arbitrary constants.
2. Solve $\left(D+D^{\prime}-1\right)\left(D-2 D^{\prime}+3\right) z=0$.
3. Find the root mean square value of $f(x)=x(1-x)$ in $0 \leq x \leq 1$.
4. Find the sine series of the function $f(x)=1,0 \leq x \leq \pi$.
5. Solve $3 x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0$ by method of separation of variables.
6. Write all possible solutions of two dimensional heat equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
7. If $F(s)$ is the Fourier transform of $f(x)$, prove that $F[f(a x)]=\frac{1}{a} F\left[\frac{s}{a}\right], a \neq 0$.
8. Evaluate $\int_{0}^{\infty} \frac{s^{2} d s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$ using Fourier transforms.
9. Find the Z-transform of $\frac{1}{n+1}$.
10. State the final value theorem in Z transform.

PART - B

11. (a) (i) Find the complete solution $z^{2}\left(p^{2}+q^{2}\right)=\left(x^{2}+y^{2}\right)$.
(ii) Find the general solution of $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=2 \cos y-x$. siny.
(OR)
(b) (i) Find the general solution of $\left(z^{2}-y^{2}-2 y z\right) p+(x y+z x) q=(x y-z x)$.
(ii) Find the general solution of $\left(D^{2}+D^{\prime 2}\right) z=x^{2} y^{2}$.
12. (a) (i) Find the Fourier series expansion of the following periodic function of period 4,
$f(x)=\left\{\begin{array}{l}2+x,-2 \leq x \leq 0 \\ 2-x, 0 \leq x \leq 2\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$
(ii) Find the complex form of Fourier series of $f(x)=e^{a x}$ in the interval $(-\pi, \pi)$, where a is a real number.

Hence deduce that $\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}=\frac{\pi}{a \sinh (\pi)}$.
(OR)
(b) (i) Find the half range cosine series of $f(x)=(\pi-x)^{2}, 0<x<\pi$. Hence find the sum of the series $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots=\frac{\pi^{4}}{90}$
(ii) Determine the first two harmonics of Fourier series for the following data.

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$
$y=f(x)$	1.98	1.30	1.05	1.30	-0.88	-.25

13. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position.

If it is vibrating by giving to each of its points a velocity $v=\left\{\begin{array}{l}\frac{2 k x}{1} \text { in } 0<x<\frac{1}{2} \\ \frac{2 k(I-x)}{1} \text { in } \frac{1}{2}<x<1\end{array}\right.$. Find the displacement of the string at any distance x from one end at any time t .
(OR)
(b) A bar 10 cm long with insulated sides has its ends A and B maintained at temperature $50^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively, until steady state conditions prevails. The temperature at A is suddenly raised to $90^{\circ} \mathrm{C}$ and at the same time lowered to $60^{\circ} \mathrm{C}$ at B . Find the temperature distributed in the bar at time t .
14. (a) (i) Find the Fourier sine integral representation of the function $f(x)=e^{-x} \sin x$.
(ii) Find the Fourier cosine transform of the function $f(x)=\frac{e^{-a x}-e^{-b x}}{x}, x>0$
(OR)
(b) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-|x|,|x|<1 \\ 0,|x| \geq 1\end{array}\right.$. Hence deduce that $\int_{0}^{\infty}\left(\frac{\operatorname{sint}}{t}\right)^{4} d t=\frac{\pi}{3}$.

$$
e^{-x^{2}}
$$

(ii) Verify the convolution theorem for Fourier transform if $f(x)=g(x)=$
15. (a) (i) If $U(z)=\frac{z^{3}+z}{(z-1)^{3}}$, find the value of $u_{0} ; u_{1}$ and u_{2}.
(ii) Use Convolution theorem to evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-3)(z-4)}\right\}$
(OR)
(b) (i) Using the inversion integral method(Residue theorem), find the inverse Z-transform of $U(z)=$
$\frac{z^{2}}{(z+2)\left(z^{2}+4\right)}$.
(ii) Using the Z-transform solve the difference equation $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ given that $u_{0}=0$ and $u_{1}=1$.

