MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS NOV/DEC 2014

PART -A

1. Form the partial differential equation by eliminating the arbitrary function f from $z=f\left(\frac{y}{x}\right)$.
2. Find the complete solution of $p+q=1$.
3. State the sufficient conditions for existence of Fourier series.
4. If $(\pi-x)^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos (n x)}{n^{2}}$ in $0<x<2 \pi$, then deduce that the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
5. Classify the partial differential equation $\left(1-x^{2}\right) Z_{x x}-2 x y Z_{x y}+\left(1-y^{2}\right) Z_{y y}+x z_{x}+3 x^{2} y z_{y}-2 z=0$.
6. Write down the various possible solutions of one dimensional heat flow equation.
7. State and prove modulation theorem on Fourier Transforms.
8. If $F[f(x)]=F(s)$, then find $F\left\{e^{i a x} . f(x)\right\}$.
9. Find the Z-transform of n.
10. State initial value theorem on Z-transforms.

PART - B

11. (a) (I) Find the singular solution of $z=p x+q y=p^{2}-q^{2}$.
(ii) Solve ($\left.D^{2}-2 D D^{\prime}\right) z=x^{3} y+e^{2 x-y}$.
(OR)
(b) (i) Solve $x(y-z) p+y(z-x) q=z(x-y)$.
(ii) Solve $\left(D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) z=\sin (x+2 y)$.
12. (a) (i) Find the fourier series of $f(x)=x^{2}$ in $-\pi<x<\pi$. Hence deduce that the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(ii) Find the half range cosine series expansion of $(x-1)^{2}$ in $0<x<1$.
(OR)
(b) (i) Compute the first two harmonics of the Fourier series of $f(x)$ from the table given:

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$\mathrm{y}=\mathrm{f}(\mathrm{x})$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

(ii) Obtain the Fourier cosine series expansion of $f(x)=x$ in $0<x<4$. Hence deduce the value of $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\cdots$
13. (a) If a tightly stretched string of length I is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial \mathrm{y}}{\partial \mathrm{t}}\right)_{\mathrm{t}=0}=\mathrm{V}_{0} \sin ^{3}\left(\frac{\pi \mathrm{x}}{\mathrm{l}}\right), 0<\mathrm{x}<1$, determine the transverse displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.

(OR)

(b) A square plate is bounded by the lines $x=0, x=a, y=0$ and $y=b$. Its surfaces are insulated and the temperature along $\mathrm{y}=\mathrm{b}$ is kept at $100^{\circ} \mathrm{C}$, while the temperature along other three edges are at $0^{\circ} \mathrm{C}$. Find the steady state temperature at any point in the plate.
14. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-|x|,|x|<1 \\ 0,|x| \geq a\end{array}\right.$. Hence deduce that (i) $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t=\frac{\pi}{2}$. (ii) $\int_{0}^{\infty}\left(\frac{\operatorname{sint}}{t}\right)^{4} d t=\frac{\pi}{3}$.
(OR)
(b) (i) Find the Fourier transform of $f(x)=e^{-a^{2} x^{2}}$. Show that $e^{-x^{2} / 2}$ is self reciprocal under Fourier Transform.
(ii) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ using transforms.
15. (a) (i) Find $Z[\cos (n \theta)]$ and $Z[\sin (n \theta)]$.
(ii) Using Z-transforms, solve $u_{n+2}-3 u_{n+1}+2 u_{n}=3^{n}$ given that $u_{0}=0$ and $u_{1}=1$.
(OR)
(b) (i) Find the Z-transform of $\left[\frac{1}{n(n+1)}\right]$, where $n \geq 1$
(ii) Find the inverse Z-transform of $\frac{z^{2}+z}{(z-1)\left(z^{2}+1\right)}$ using partial fraction method.

