MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS MAY/JUNE 2016

PART -A

1. Form the partial differential equation by eliminating the arbitrary functions from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
2. Find the complete solution of the partial differential equation $p^{3}-q^{3}=0$.
3. Find the value of the Fourier series of $f(x)=\left\{\begin{array}{l}0 \text { in }(-c, 0) \\ 1 \text { in }(0, c)\end{array}\right.$ at the point of discontinuity $x=0$.
4. Find the value of b_{n} in the Fourier series expansion of $f(x)=\left\{\begin{array}{l}x+\pi \text { in }(-\pi, 0) \\ -x+\pi \text { in }(0, \pi)\end{array}\right.$.
5. Classify the partial differential equation $u_{x x}+u_{y y}=f(x, y)$.
6. Write down all the possible solutions of one dimensional heat equation.
7. State Fourier integral theorem.
8. Find the Fourier transform of derivative of the function $f(x)$ if $f(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
9. Find $Z\left[\frac{1}{n!}\right]$
10. Find $Z\left\{(\cos \theta+i \sin \theta)^{n}\right\}$.

PART - B

11. (a) (i) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$.
(ii) Find the singular solution of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$
(OR)
(b) (i) Solve $\left(D^{3}-2 D^{2} D^{\prime}\right) z=2 e^{2 x}+3 x^{2} y$.
(ii) Solve $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)$.

12 (a) (i) Find the Fourier series of $f(x)=x$ in $-\pi<x<\pi$.
(ii) Find the Fourier series of $f(x)=|\cos x|$ in $-\pi<x<\pi$.
(OR)
(b) (i) Find the half range sine series of $f(x)=x \cdot \cos (\pi x)$ in $(0,1)$.
(ii) Find the Fourier cosine series up to third harmonic to represent the function given by the following data:

x	0	1	2	3	4	5
y	4	8	15	7	6	2

13 (a) Find the displacement of a string stretched between two fixed points at a distance of 21 apart when the string is initially at rest in equilibrium position and points of the string are given initial velocities v where
$v=\left\{\begin{array}{l}\frac{x}{l} \text { in }(0, I) \\ \frac{(2 l-x)}{I} \text { in(l,2l) }\end{array}, x\right.$ being the distance measured from one end.
(OR)
(b) A long rectangular plate with insulated surface is $I \mathrm{~cm}$ wide. If the temperature along one short edge is $u(x, 0)=k\left(\mid x-x^{2}\right)$ for $0<x<l$, while the other two long edges $x=0$ and $x=1$ as well as the other short edge are kept at $0^{\circ} \mathrm{C}$, find the steady state temperature function $u(x, y)$.
14. (a) Find the Fourier cosine and sine transform of $f(x)=e^{-a x}$ for $x>0$. Hence deduce the integrals
$\int_{0}^{\infty} \frac{\cos (s x)}{a^{2}+s^{2}} d s$ and $\int_{0}^{\infty} \frac{\operatorname{s.\operatorname {sin}(sx)}}{a^{2}+s^{2}} d s$
(OR)
(b) (j) Find the Fourier transform of $f(x)=e^{-x^{2} / 2}$ in $(-\infty, \infty)$.
(ii) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-|x|,|x|<1 \\ 0,|x| \geq 1\end{array}\right.$. Hence deduce that $\int_{0}^{\infty}\left(\frac{\operatorname{sint}}{t}\right)^{4} d t=\frac{\pi}{3}$.

15 (a) (i) Find the Z transform of $\cos \left(\frac{n \pi}{2}\right)$ and $\frac{1}{n(n+1)}$
(ii) Using Convolution theorem, evaluate $z^{-1}\left[\frac{z^{2}}{(z-a)^{2}}\right]$
(OR)
(b) (i) Find the inverse Z transform of $\frac{z}{z^{2}-2 z+2}$ by residue method.
(ii) Solve the difference equation $\mathrm{y}_{\mathrm{n}+2}+\mathrm{y}_{\mathrm{n}}=2$, given that $\mathrm{y}_{0}=0$ and $\mathrm{y}_{1}=0$ by using Z-transforms.

