UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

1. Define random process?

The sample space composed of functions of time is called a random process.

2. Define Stationary process?

If a random process is divided into a number of time intervals, the various sections of the process exhibit essentially the same statistical properties. Such a process is said to be stationary.

3. Define Non Stationary process?

If a random process is divided into a number of time intervals, the various sections of the process does not exhibit essentially the same statistical properties. Such a process is said to be stationary.

4. Define sample function?

A fixed sample point s_j , the function of $X(t, s_j)$, is called a realization or a sample function of the random process. The sample function is given as

$$X_j(t) = X(t, s_j)$$

5. Define Mean function?

The mean of the random process is denoted by $\mu_x(t)$ the mean value is the expected value of the random process X(t).

$$\mu_{X}(t) = E[X(t)]$$

$$= \int_{\infty}^{\infty} (\cdot)(\cdot) \cdot (\cdot)$$

Where $f_{x(t)}(x)$ is the first order probability density function of the random process. For a stationary random process, $f_{x(t)}(x)$ is independent of time.

6. Define Auto Correlation function?

It is defined as the expectation of the product of two random variables which are obtained by observing the random process X (t) at different times t_1 and t_2 . The corresponding random variables are X (t_1) and X (t_2).

The autocorrelation function is given by

$$R_{x}(t_{1},t_{2}) = E[X[t_{1}]X[t_{2}]]$$

$$R_{x}(t_{1},t_{2}) = -\infty - \infty - x_{1}x_{2}f_{x(t_{1})x(t_{2})}(x_{1}, x_{2})dx_{1}dx_{2}$$

Where $f_{x(t1)x(t2)}(x_1, x_2)$ is a second order probability density function of the random process.

7. List out the properties of auto correlation function.

The autocorrelation function of a stationary process X(t) is

$$R_x(z) = E[X(t+z)X(t)]$$

Property1:

The mean square value of the process is obtained from $R_x(\tau)$ by putting $\tau = 0$ $R_x(0) = E[X(t+0)X(t)] = E[X^2(t)]$

Property 2:

The autocorrelation function $R_x(z)$ is a even function of z

$$R_x(\tau) = R_x(-\tau)$$

Property 3:

The autocorrelation function has its maximum magnitude at $\tau = 0$

$$\mid R_x(\tau) \mid \leq R_x(0)$$

8. Define Auto Covariance?

The auto covariance function is denoted by $C_x(t_1, t_2)$ is given by

$$C_x(t_1,t_2) = E[(X(t_1)-\mu_x)(X(t_2)-\mu_x)]$$

$$C_x(t_1,t_2) = E[X(t_1)X(t_2) - X(t_1)\mu_x - \mu_x X(t_2) + \mu_x^2]$$

$$C_x(t_1,t_2) = E[X(t_1)X(t_2)] - E[X(t_1)]\mu_x - \mu_x E[X(t_2)] + \mu_x^2]$$

$$C_x(t_1,t_2) = E[X(t_1) | X(t_2)] = E[X(t_1)]$$

$$C_x(t_1,t_2) = R_x(t_1,t_2) - \mu_x^2 - \mu_x^2 + \mu_x^2$$

$$C_x(t_1,t_2) = R_x(t_1,t_2) - \mu_x^2$$

$$C_x(t_1,t_2) = R_x(t_1,t_2) - \mu_x$$

9. Define Cross Correlation?

The two cross correlation function of X(t) and Y(t) are defined by

$$R_{xv}(t, u) = E[X(t) Y(u)]$$

$$R_{vx}(t, u) = E[Y(t) X(u)]$$

Where t and u are the values of times on which process is observed.

10. List the properties of correlation function

- It is not an even function. i)
- It does not have its maximum at origin ii)
- iii) It obeys certain symmetry relationship

$$R_{xy}(z) = R_{yx}(-z)$$

11. Define time average of Ergodic process in mean?

The mean of a random process X(t) at some fixed time t_k is the expectation of the random variable $X(t_k)$ that describes all possible values of the sample functions of the process observed at time $t=t_k$

The sample function x(t) of a stationary process X(t) at interval $-T \le t \le T$.

The DC value of x(t) is defined by the time average

$$\mu_{x}(T) = 1/2T$$

12. Define time average of Ergodic process in auto correlation?

The time average of particular interest is the autocorrelation function $R_x(\tau, T)$ is defined in terms of the sample function x(t) of a stationary process X(t) at interval $-T \le t \le T$, the time averaged autocorrelation function is given by

$$R_{x}(\zeta, T) = 1/2T \int_{-\tau}^{\tau} x(t+\zeta)x(t)dt$$

13. List out the properties of power spectral density.

Property 1:

The zero value of PSD of a stationary random process equals to total area under the graph of the autocorrelation function

$$S_{x}(f) = \int_{\infty}^{\infty} Rx(c) \exp(j2\pi f(-c)) dc$$

Sub f = 0 in above equation

$$S_{x}(0) = \int_{-\infty}^{\infty} Rx(\xi) d\xi$$

Property 2:

The mean square value of the stationary process equals to the total area under graph of the power spectral density

$$E[X^{2}(t)] = \int_{-\infty}^{\infty} \frac{1}{(t)^{2}}$$

Property 3:

The power spectral density of a stationary process is always nonnegative

$$S_x(f)df \ge 0$$
 for all f

Property 4:

The power spectral density of a real valued random process is an even function of frequency

$$S_x(-f) = S_x(f)$$

Property 5:

The power spectral density appropriately normalized has the properties associated with a probability density function

$$P_x(f) = \int_{-\infty}^{\infty} ()$$

14. Define Gaussian Random variable

A random process X(t) is said to be Gaussian distributed if every linear function of X(t) is a Gaussian random variable. The PDF of Gaussian distributed random variable Y is given by

$$f_Y(y) = \frac{(-)(-)}{2}$$

15. Explain central limit theorem

An important result in probability theory that is closely related to the Gaussian distribution is the central limit theorem. Let X_1, X_2, \ldots, X_n be a set of random variables with the following properties:

- 1. The X_k with $k = 1, 2, 3, \ldots, n$ are statistically independent.
- 2. The X_k all have the same probability density function.
- 3. Both the mean and the variance exist for each X_k .

We do not assume that the density function of the X_k is Gaussian. Let Y be a new random variable defined as

$$Y = \sum_{i=1}^{n} X_k$$

16. Write the Einstien-Wiener-Khintchine relations

The power spectral density $S_x(f)$ and auto correlation function Rx(f) of a stationary process is given by

$$S_{x}(f) = \int_{-\infty}^{\infty} Rx(c) \exp(j2\pi f(-c)) dc$$

$$R_{x}(c) = \int_{-\infty}^{\infty} Sx(f) \exp(j2\pi f(c)) df$$

The above two relation together called as Einstien Wiener Khintchine relation

17. Define transmissions of a random process through a LTI filter?

When the random process X(t) is applied as input to a linear time – invariant filter of impulse response h(t), producing a new random process Y(t) at the filter output.

18. Define Discrete Random Variable

A random variable whose set of possible values either in finite or countably infinite is called discrete random variable.

19. Define Continuous random variable

A random variable X is said to be continuous if it takes all possible values between certain limits say from real number 'a' to real number 'b'.

If X is a continuous random variable for any x_1 and x_2 .

$$P(x_1 \le X \le x_2) = P(x_1 < X \le x_2) = P(x_1 \le X < x_2) = P(x_1 < X < x_2)$$

- 20. List the properties of Probability distribution function.
 - 1. The distribution function $F_x(x)$ is bounded between zero and one.
 - 2. The distribution function $F_x(x)$ is monotone non decreasing function of x. $F_x(x_1) \leq F_x(x_2)$
- 21. List the properties of Probability density function.

1.
$$f(x) \ge 0$$

1.
$$f(x) \ge 0$$

2. f_{∞}^{∞} () =1

3. $f(x) \ge 0$

16 MARK QUESTIONS

- 1. Explain the following terms (i) Random variable (ii) Gaussian process
- 2. Define and explain the following:
 - (i)Gaussian noise and Gaussian distribution
 - (ii)Thermal Noise
 - (iii)Shot Noise

What type of PDF does the Gaussian noise follow?

3. X is uniformly distributed as given below find E(X), $E[X^2]$, $E[\cos X]$ and $E[(X-mx)^2]$

- 4. State and Prove the properties of Gaussian Process.
- 5. (i) Explain the following terms mean, correlation, covariance, ergodicity.
 - (ii) Give the properties of the auto correlation function.
- 6. (i) An AWGN of power spectral density 1uW is fed through a filter with frequency response H(f) = 1/2; |f| < 40 kHz
 - 0; elsewhere. Calculate the noise power at the output of the filter.
 - (ii)Write a note on stationary processes and its classifications.
- 7. Derive the equation for finding the probability density function of a one to one differential function of a given random variable.
- 8. (i)Explain about Transmission of random process through a Linear Time Invariant (LTI) filter.
 - (ii) Find the autocorrelation of a sequence $x(t) = A\cos(2\mathbb{Z}fc(t+\theta))$ where A and fc are constant

and is a random variable that is uniformly distributed over the interval $[-\pi \pi]$.

- 9. (i) Define autocorrelation. Discuss the properties of autocorrelation function.
- (ii) Consider the Random processes X(t) & Y(t) have zero mean and they are individually stationary. Consider the sum random process Z(t) = X(t) + Y(t). Determine the power spectral density of Z(t).
- 10. State and prove the properties of power spectral density.