1) state Newton's backward (interpolation) formula [NOV lie] [NOV lie]
$$y = y_n + \frac{v}{1!} \quad \forall y_n + \frac{v(v+1)}{2!} \quad \forall^2 y_n + \frac{v(v+1)(v+2)}{3!} \quad \forall^3 y_n + \cdots$$
Where $v = \frac{x-\alpha_n}{2}$

State Newton's forward interpolation formula [Mayl13] [NOV/13]
$$y = f(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \cdots$$
where $u = \frac{x - x_0}{6}$

3) Using Lagrange's formula find the polynomial to the given data \times 0 1 3 [May 18]

$$\frac{301:}{y = f(x)} = \frac{(\chi - \chi_1)(\chi - \chi_2)}{(\chi_0 - \chi_1)(\chi_0 - \chi_2)} y_0 + \frac{(\chi - \chi_0)(\chi - \chi_2)}{(\chi_1 - \chi_0)(\chi_1 - \chi_2)} y_1 + \frac{(\chi - \chi_0)(\chi_2 - \chi_1)}{(\chi_2 - \chi_0)(\chi_2 - \chi_1)} y_2 \\
= \frac{(\chi - 1)(\chi - 3)}{(0 - 1)(0 - 3)} (5) + \frac{(\chi - 0)(\chi - 3)}{(1 - 0)(1 - 3)} (6) + \frac{(\chi - 1)(\chi_2 - \chi_1)}{(3 - 0)(3 - 1)} (50) \\
= \frac{5}{3} (\chi^2 - 4\chi + 3) - 3(\chi^2 - 3\chi) + \frac{50}{6} (\chi^2 - \chi)$$

$$y = f(x) = \chi^2 (\frac{5}{3} - 3 + \frac{50}{6}) + 2(\frac{-20}{3} + 9 - \frac{50}{6}) + \frac{15}{3}$$

$$-72^2 - 6\chi + 5.$$

4) First the divided differences table for $f(x) = x^3 - x^4 + 3x + 8$ for the arguments 0.1.4.5.

Soli Given $f(x) = y = x^{3} - x^{4} + 3x + 8$

7	tou	AGCA)	10-100	13 f(x).
0 1 4 5	8 11 68 123	$\frac{11-8}{1-0} = 3$ $\frac{68-11}{4-1} = 19$ $\frac{123-68}{5-4} = 55$	$\frac{19-3}{4-0} = 4$ $\frac{55-19}{5-1} = 9$	9-4 = 1

5) Fird the second degree polynomial through the points (0,2), (2,1), (1,0) using lagrange's formula [NOV114]

$$y = f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x_0 - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x_0 - x_1)}{(x_0 - x_0)(x_0 - x_1)} y_2$$

$$y = \frac{(x-2)(x-1)}{(o-1)(o-1)}(2) + \frac{(x-o)(x-1)}{(2-o)(2-1)}(1) + \frac{(x-o)(x-2)}{(1-o)(1-2)}(0).$$

=
$$a(x^2-3x+2)+a(x^2-x)+0$$

$$y = 4x^{2} - 8x + 4$$

- 6) for cutic splines, what are the 4n conditions required to evaluate the unknowns [Nov115]
 - 1. The function values must be equal at the interior knots (&n-s) Condition.
 - 2. The first & last functions must pass through the end points (2 condition)
 - 3. The first derivatives at the interior knots must be equal (n-1) Cordition
 - 4. The second derivatives at the interior knots must be equal
 - (n-1) condition.
 - 5. The second desiratives at the end knots are zero (& condition)

X	f(x)	4.5(x)	4-5.t(x)	43500)
b 1 3	4	$\frac{4-1}{1-0} = 3$ $\frac{40-4}{3-1} = 18$ $\frac{85-40}{4-3} = 45$	$\frac{18-3}{3-b} = 5$ $\frac{45-18}{4-1} = 9$	9-5 4-0 = 1.
4	85	4-3		
	t 43 (-	$\left(\frac{1}{2}\right) = \frac{-1}{abcd}$		
Let S	$(\alpha) = \frac{1}{\alpha}$	$\begin{array}{c cccc} x & a & b \\ f(x) & \frac{1}{a} & \frac{1}{b} \end{array}$	$\begin{array}{c c} C & d \\ \hline \frac{1}{c} & \frac{1}{a} \end{array}$	
X	f(x)	ф£	4 ² f	<i>≱</i> ³ <i>f</i>
a	- a	$\frac{\frac{1}{b} - \frac{1}{a}}{b - a} = \frac{a - b}{ab}$ $= \frac{-1}{ab}$	b-a)	
Ь	5	$\frac{\frac{1}{c} - \frac{1}{b}}{c - b} = \frac{b - c}{bc(c)}$ $= -\frac{1}{bc}$	c-a	tod - abc
C	10	$= \frac{1}{bc}$ $\frac{1}{d-c} = \frac{c-d}{dc(d)}$ $= \frac{1}{cd}$	cd + bc	d-a $= -1$ $abcd$
d	1	d-c acia		

interpolation? [May [14]

i) S(x) is a polynomial of degree 1 in $x < x_0$ and $x > x_0$ ii) S(x) is at most a cubic polynomial in $(x_{i-1} - x_i)$ iii) S(x), S(x) & S'(x) are continuous at each point

iv) $S(x_i) = y_i$ i = 0,1,2,3,...,n.

Interpolation and Approximation.

Toter polation and Approximation.

I spind the number of the following table using Lagranges interpolation.

$$\begin{array}{lll}
X & 0 & 1 & 2 & 3 & 4 \\
Y & 1 & 3 & 9 & - & 81
\end{array}$$
Hints:

$$\begin{array}{lll}
Y = f(x) & = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_3)(x_0 - x_3)} & y_0 \\
& + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_1 - x_0)(x_1 - x_3)(x_1 - x_3)} & y_1 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_1 - x_3)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_3)} & y_2 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_1 - x_3)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_3)} & y_3 \\
& = \frac{(x - 1)(x_1 - 2)(x_1 - x_1)(x_1 - x_2)}{(x_1 - x_1)(x_1 - x_2)(x_2 - x_2)(x_3 - x_3)(x_3 - x_3)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_2 - x_2)(x_2 - x_2)(x_3 - x_3)(x_4 - x_3)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_2 - x_2)(x_2 - x_2)(x_3 - x_3)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_2 - x_2)(x_3 - x_3)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_2 - x_0)(x_3 - x_1)(x_3 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_2 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_1 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_2 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_1 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_2 - x_2)}{(x_1 - x_1)(x_1 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_1)(x_1 - x_2)}{(x_1 - x_1)(x_1 - x_2)} & y_3 \\
& + \frac{(x - x_0)(x_1 - x_$$

(2) Using Lagranges formula find the Polynomial for the following data

$$x = 0 + 2 + 4$$
 $f(x) = 3 + 12 + 147$

Hint:

 $y = f(x) = \frac{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_3)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{(x_0 - x_0)(x_0 - x_0)} \cdot y_0$
 $+ \frac{(x_0 - x_0)(x_0 - x_0)(x_0 - x_0)}{$

	74 - (9	1-4,7(4 -4	(4-43)	11-10-1		
	140	-4,) (4,-	4,1(4,-4.)	. × 0		
	1 (4-40) (4-	4 1 (4-43)	04		
	7 -	-40) (Y	-4°1 (A'-A3)	1 9 1		
			4)(4-43)			
	7 -	3 30/6	11/4-41	, 25		
	Contract Contract	yy0)(9,	-21) (2-23)			
	+ ((4-90) (9.	-41)(4-42)	×3		
	_(193-70) 1	9-21) (9-2)	1 2 12	45446	
	× = -	0.7820 8	+6.5322	5 + 3	33.6818	18
			-	2.20161	2	
	. 0	0 2 0 1				
		7.2304				*
Œ.		Pr. V	a Polynon	nal in	x for	The -
Œ) gend	f(x) as	a polynon	1	100	the nence
Œ	gend following formula	f(x) as data and	hence fin	d flo	2)	The mence
Œ	Jend following formula	f(x) as data and 4 5	hence fin	d f(8	13	The mence
Œ	pend following formula pr F(XI)	f(x) as data and : 4 5 48 10	hence fine 7 16	d f(8	13 2028	
Œ	pend following formula f(x1)	f(x) as data and : 4 5 48 10 F(x)	hence fin	d f(8	13 2028	Me mence
E	Jend following formula f(x) x 4	f(x) as data and : 4 5 48 10 f(x) 48	hence fine 7 16	d f (6) 11 1210 AP/11	13 2028	
Œ	pend following formula f(x1)	f(x) ors data and: 4 5 48 10 f(x) 48	hence fine 7 10 0 294 900 4 960	1 f (6) 11 1210 Apply	13 2028	A PIN)
Œ.	Jend following formula f(x) x 4	f(x) as data and : 4 5 48 10 f(x) 48	hence fine 7 10 0 294 900 4 fhi) 52	d f (6) 11 1210 AP/11	13 2028	
E	Jend following formula f(x) x 4	f(x) ors data and: 4 5 48 10 f(x) 48	hence find 7 10 0 294 900 4 fm) 52 97	1 f (6) 11 1210 Apply	13 2028	\$ \$(x)
Œ.	Jend following formula f(x) x 4 5	f(x) as data and : 4 5 48 10 f(x) 48 100 294	hence fine 7 10 0 294 900 4 fhi) 52	1 f (6 1) 12/0 15 21	13 2028	\$ P(x)

(3)	Using Newton's forward in formula, find the polynomial the following data and hence value of y for x = 5	f(x) Satisfying
	y 1 3 8 16	
	x y s s	A 3
	4 1 2	
	6 3 5	0 -
	8 8 8	
	$u = \frac{21 - 20}{6} = \frac{12 - 10}{5} = 0.4$	
	y(x) = y0 + u sy0 + u(u-1) sy0	+ 4(4-1)4-2) 3
	f(5) = 29.125	+ · · · .

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(7)	Using N Jormula, which to	ewilons find his	sorward Re Cubi alues	interpol u poly	ation	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	. 0	1 2	3		
$0 \qquad 1 \qquad 1 \qquad -2 \qquad 12 \qquad 2 \qquad 1 \qquad 2 \qquad 10 \qquad 3 \qquad 10 \qquad 10$		Hints			1	3	
$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!}$ $y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!}$ $y(x) = 2x^3 + x^2 + 6x + 1$		×	y	\$g	Sy	Sy	
$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!}$ $y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!}$ $y(x) = 2x^3 + x^2 + 6x + 1$		0	1	1	-2		
$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} y_0^3$ $y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} y_0^3$ $y(x) = 2x^3 + x^2 + 6x + 1$		1	2	-)		12	
$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} y_0^3$ $y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} y_0^3$ $y(x) = 2x^3 + x^2 + 6x + 1$		2	1	9	10		
$y(x) = 2x^{3}x^{2} + 6x + 1$		3	10	, un	(-1) 24+	u(u-1)(u-2) 3 Dy
$y(x) = 2x^{3}x^{2} + 6x + 1$		$y(x) = y_0$	+ 4 00	10 T-0	1 20	3 ! V	,
		No=0	yo = 1	R = 1	u = 1	10 = X	
P(4) = 41		y(x) =	2x3x2+6x	(+)		130 45	
		p (4) = 41			che - l		

6	of St	the g	iven. dati	à, gin weight	d H	re num	iben
	Weight	TO in 163 Students	250	40-60 120	100	70	50
	20	y	cumulatue	· Dy	13	Δ^3y	sty
	Belau40	250	250	120			
	60	120	370	100	-20	-10	
	100	70	470 540	70	-30 -20	10	20
	120	60	590	50	⊥ U(U-1)((u-2) g	
	y(x) =	= 40+ 41	140+ ul				y ₀
	u	$=\frac{x-x_0}{p}$	= 70-4	u-1) (u-2)		00	
	y (7	0) =	4 23 . 593	7			

$$x = 60$$
 $u = \frac{60-40}{20} = 1$
 $y(160) = 370$
 $y(160) = 3$

$$d_{1} = \frac{-1+8}{1} = 1, \quad d_{3} = \frac{18+1}{1} = 19 \quad t = \frac{x-x_{1-1}}{6!} = 7$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} k_{0} \\ k_{1} \end{pmatrix} = \begin{pmatrix} 21 \\ 78 \\ 57 \end{pmatrix}$$

$$k_{0} = 4 \quad k_{1} = 13 \quad k_{2} = 22$$

$$\chi_{0} = 1 \quad h_{1} = 1 \quad \chi_{1} = 2$$

$$\beta_{0} = -8 \quad f_{1} = -1$$

$$\beta_{1} = (1-t) \quad f_{1-1} + t \quad f_{1} + f_{1} + f_{1} + f_{1} + f_{2} + f_{3} + f_{4} + f_{4} + f_{4} + f_{4} + f_{5} + f_{5}$$