UNIT 1
Solution $\%$ Equations and Eigen value problems

Part A
(1) Write dour the order 9 convergence and the condition for convergence of fixed point iteration method.
(i) order if Convergence is I
(ii) Condition for the convergence of iteration Mernod is $\left|g^{\prime}(x)\right|<1$.
(2) Find an iterative formula to find the reciprocal $g$ a given number $N \quad(N \neq 0)$

Let $x=\frac{1}{N}$

$$
\begin{aligned}
& N=\frac{1}{x} \\
& f(x)=\frac{1}{x}-N, f^{\prime}(x)=\frac{-1}{x^{2}} \\
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\left[\frac{1}{x_{n}}-N\right. \\
&=x_{n}+x_{n}^{2}\left[\frac{1}{x_{n}^{2}}-N\right] \\
&=x_{n}+x_{n}-N x_{n}^{2} \\
&=2 x_{n}-N x_{n}^{2} \\
&=x_{n}\left[2-N x_{n}\right]
\end{aligned}
$$

(3) What is the use of power Method? To find the numerically largest Eigen value of a given Matrix


Let $x=\sqrt{N} \Rightarrow x^{2}=N$

$$
\begin{aligned}
x^{2}-N & =0 \\
f(x) & =x^{2}-N \\
f^{\prime}(x) & =2 x \\
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-N}{2 x_{n}} \\
& =\frac{2 x_{n}^{2}-x_{n}^{2}+N}{2 x_{n}} \\
x_{n+1} & =\frac{x_{n}^{2}+N}{2 x_{n}}
\end{aligned}
$$

(5)

Solve the equations $x+2 y=1$ \& $\quad 3 x-2 y=7$
Method. \& by Gauss Elimination Method.
SoIl

$$
\begin{array}{rl}
(A, B) & =\left[\begin{array}{ll|l}
1 & 2 & 1 \\
3 & -2 & 7
\end{array}\right] \\
& \left.=\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & -8 & 4
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-3 R \\
-8 x
\end{array}\right) \\
x & x+2 y=1 \\
x+2 y & =1 \\
2 y=1+2 \\
2 y=3 / 2
\end{array}
$$

(6) Evaluate $\sqrt{15}$ using Neuten-Raphsons formula.
Sols

$$
\begin{aligned}
N & =15 \\
x_{n+1} & =\frac{x_{n}^{2}+N}{2 x_{n}}
\end{aligned}
$$

Let $x_{0}=3.5$

$$
\begin{aligned}
& x_{1}=\frac{x_{0}^{2}+N}{2 x_{0}}=\frac{3.5^{2}+15}{2(3.5)}=3.893 \\
& x_{2}=\frac{x_{1}^{2}+N}{2 x_{1}}=\frac{(3.893)^{2}+15}{2(3.893)}=3.873 \\
& x_{3}=\frac{x_{2}^{2}+N}{2 x_{2}}=\frac{(3.873)^{2}+15}{2(3.873)}=3.873 \\
& \therefore \sqrt{15}=3.873
\end{aligned}
$$

(7) Write the procedure involved in Gauss Jordan elimination Method.
Loin Consider the system of egos $A x=B$
If $A$ is a diagonal matrix the on system
$\begin{gathered}\text { reduces to }\end{gathered}\left[\begin{array}{ccccc}a_{11} & 0 & \cdots & 0 \\ 0 & a_{2} & \cdots & \cdots & 0 \\ \cdots & 0 & \cdots & \cdots & \cdots\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{n} \\ x_{n}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{n}\end{array}\right]$
This system reduces to the following $n$ egrs

$$
\begin{aligned}
& \text { This system reduces } \\
& a_{11} x_{1}=b_{1}, a_{22} x_{2}=b_{2}, \ldots{ }_{n n} x_{n}=b_{n} \text {. }
\end{aligned}
$$

Hence we get the solutions as

$$
x_{1}=\frac{b_{1}}{a_{11}}, \quad x_{2}=\frac{b_{2}}{a_{22}}, \quad x_{n}=\frac{b_{n}}{a_{n n}}
$$

The Method of obtaining the solution of the system of equations by reducing her diagonal Matrix is known Matrix A to a Jordan Method. as Caus Jordan Me rod.
(8) Write down the condition for convergence of Neuron Raphson Method for $\rho(x)=0$.

The order of convergence is 2
rmatition for convergence is $\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2}$

9 find the inverse of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$ by
Gauss Jordan Merfiod of
Solon

$$
\begin{aligned}
(A / I) & =\left[\begin{array}{cc|cc}
1 & 3 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc|cc}
1 & 3 & 1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right] R_{2} \rightarrow R_{2}-2 R, \\
& =\left[\begin{array}{ll|rl}
1 & 0 & 7 & -31 \\
0 & 1 & -2 & 1
\end{array}\right] \xrightarrow{1} \rightarrow R_{1}-3 R_{1}
\end{aligned}
$$

$$
\therefore \text { Inverse of } A \text { is }\left[\begin{array}{cc}
-7 & -2 \\
-2 & 1
\end{array}\right]
$$

(10) What is the Giterion for the convergence of Neuter Raphison Method?

The sequence $x_{1} x_{2} \ldots$. converges to the exact value if $\left|\phi^{\prime}(x)\right|<1$

$$
\text { (i.e) if }\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2} \text {. }
$$

(15) Give tire direct Mernod to solve a System of linear equations.

1. Gauss Elimination Herod
2. Gauss Jordan Merhod
(12) Give luis indirect methods to solve a system of linear equations.
3. Caus Jacobi Method
4. Gaecs Seidal method.
(13) What is the use of power Method?

The pourer Method is used to fined the inapt eigen value in Magnitude and corresponding eigen


$$
\begin{aligned}
x & =\left(2 x^{2}+5\right)^{1 / 2} \\
\text { Take } & x_{0}=2.5 \\
x_{1} & =Q\left(x_{0}\right)=\left(2\left(x_{0}\right)^{2}+5\right)^{1 / 3}=2.5962 \\
x_{2} & =2.6438 \\
x_{12} & =2.6906 \\
x_{13} & =2.6906
\end{aligned}
$$

The root is 2.690 .6
(3)
find a portive root of the equation $\cos x-3 x+1=0$ by the method of fixed
Point iteration.
Hints:

$$
\begin{aligned}
& f(x)=\cos x-3 x+1=0 \\
& f(0)=+v e \\
& f(\pi / 2)=-v e
\end{aligned}
$$

The root lies between

$$
x=\frac{1}{3}(1+\cos x)
$$

Take $\quad x_{0}=0.6$

$$
\begin{aligned}
& x_{1}=\frac{1}{3}\left(1+\cos x_{0}\right)=0.60845 \\
& x_{5}=0.60710 \\
& x_{6}=0.60710
\end{aligned}
$$

$\therefore$ The grot is 0.60710
(4) find the least positive root of $x^{4}-x-10=0$ correct to 2 decimal places using reuton Raphson Merrod.
goln

$$
\begin{aligned}
\text { Gin } f(x) & =x^{4}-x-10 \\
f^{\prime}(x) & =4 x^{3}-1 \\
f(1)=-10 & =-1 e \\
f(2)=4 & =\text { the }
\end{aligned}
$$

$\therefore$ The root lies between $1 \rightarrow 2$
Take $x_{0}=2$

$$
\begin{aligned}
& x_{n+1}=x_{n}=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=1.811 \\
& x_{2}=1.856, x_{3}=1.856 \\
& \therefore \text { The root is } 1.856
\end{aligned}
$$

(5) find a root of Newton's Merrod correct to 3 decimal places.
Hints:

$$
\begin{aligned}
& f(x)=x \log _{10} x-1.2 \\
& f(2)=-r e \\
& f(3)=+v e
\end{aligned}
$$

$\therefore$ The rook lies between 2 and 3
Take $x_{0}=2.5$

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& x_{1}=2.7465 \\
& x_{2}=2.74065 \\
& x_{3}=2.74065
\end{aligned}
$$

The root is 2.74065
(b)
find the approximate root of $x e^{x}=3$ by Neuter Raphison method correct to 3 decimal places.
Quin

$$
\begin{aligned}
& f(x)=x e^{x}-3 \\
& f^{\prime}(x)=x e^{x}+e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=-0.2817=-v e \\
& f(2)=11.7181=+v e
\end{aligned}
$$

The root lies between $1 \geqslant 2$

$$
|f(1)|<|f(2)|
$$

Take $x_{0}=1$

$$
\begin{aligned}
& \text { Take } x_{0}=1 \\
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left(x_{n}\right)} \\
& x_{1}=1.0518 \quad x_{2}=1.0499 \quad x_{3}=1.0499
\end{aligned}
$$

$\therefore$ The root is 1.0499
(7) Solve by Gauss elimination Method. Hints:

$$
\begin{aligned}
& {[A, B]=\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
4 & 4 & -3 & 3 \\
2 & -3 & 4 & 2
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
0 & -2 & -1 & -7 \\
0 & -6 & 3 & -3
\end{array}\right] R_{2} \rightarrow R_{2}-2 R_{1} \\
& =\left[\begin{array}{cccc}
2 & 3 & -1 & 5 \\
0 & -2 & -1 & -7 \\
0 & 0 & 6 & 18
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-3 R_{2} \\
& 2 x+3 y-z=5 \\
& -2 y-z=-7 \\
& 6 z=18 \\
& z=3 \quad y=2 \quad x=1
\end{aligned}
$$

(8) Solve by Gauss Jacobi Method

$$
\begin{aligned}
& 27 x+16 y-z=85, x+y+54 z=110 \\
& 6 x+5 y+2 z=72
\end{aligned}
$$

Hints:

$$
\begin{aligned}
& x=\frac{1}{27}[85-6 y+z] \\
& y=\frac{1}{27}[72-6 x-2 z] \\
& z=\frac{1}{54}[110-x-y]
\end{aligned}
$$

Let $x_{0}=0 \quad y_{0}=0 \quad z_{0}=0$

$$
\begin{array}{lll}
x_{2}=3.148 & y_{1}=4.8 & z_{1}=2.037 \\
x_{2}=2.157 & y_{2}=3.629 & z_{2}=1.890 \\
x_{3}=2.492 & y_{3}=3.685 & z_{3}=1.937 \\
\therefore x=2.426 & y=3.513 & z=1.926
\end{array}
$$

(9) Apply Gauss Jordan method to
find the solution of the following

$$
\begin{aligned}
& \text { find } \quad x+3 y+3 z=16, \quad x+4 y+3 z=18 \\
& \text { eqn } \\
& x+3 y+4 z=19 .
\end{aligned}
$$

Hints:

$$
\begin{aligned}
& =\left[\begin{array}{ccc|c}
1 & 0 & 3 & 10 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] R_{1}-3 R_{2} \\
& =\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] R_{1}-3 R_{3} \\
& x=1 \\
& y=2 \quad z=3
\end{aligned}
$$

(10) Solve the following system by Gaur

Seidal Method $20 x+y-2 z=17$,

$$
3 x+2 y-z=-18,2 x-3 y+20 z=25
$$

Soon

$$
x=\frac{1}{20}(17-y+2 z), y=\frac{1}{20}(-18-3 x+z)
$$

$$
z=\frac{1}{20}(25-2 x+3 y)
$$

$$
y=0,<0
$$

$$
x_{1}=0.8500 \quad y_{1}=-1.0275 \quad z_{1}=1.0109
$$

$$
x_{2}=1.0025 \quad y_{2}=-0.9998 \quad z_{2}=0.9998
$$

$$
x_{3}=1.000 \quad y_{3}=-1.000 \quad z_{3}=1.000 .
$$

$$
x=1, y=-1, z=1
$$

(11) Using Gauss Jordan Method find the inverse of the Matrix $A=\left(\begin{array}{ccc}2 & 2 & 6 \\ 2 & 6 & -6 \\ 4 & -8 & -8\end{array}\right)$

$$
\begin{aligned}
& \text { Hints: } \\
& {[A \mid I]=A=\left[\begin{array}{ccc|ccc}
2 & 2 & 6 & 1 & 0 & 0 \\
2 & 6 & -6 & 0 & 1 & 0 \\
4 & -8 & -8 & 0 & 0 & 1
\end{array}\right]} \\
& A=\left[\begin{array}{ccc|ccc}
1 & 1 & 3 & 1 / 2 & 0 & 0 \\
2 & 3 & -3 & 0 & 1 / 2 & 0 \\
1 & -2 & -2 & 0 & 0 & 1 / 4
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1} / 2 \\
R_{2} \rightarrow R_{2} / 2 \\
R_{3} \rightarrow R_{3} / 4
\end{array} \\
& =\left[\begin{array}{ccc|ccc}
1 & 1 & 3 & 1 / 2 & 0 & 0 \\
0 & 2 & -6 & -1 / 2 & 1 / 2 & 0 \\
0 & -3 & -5 & -1 / 2 & 0 & 1 / 4
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{3}-R, \\
R_{3} \rightarrow R_{3}-R,
\end{array} \\
& =\left[\begin{array}{cccccc}
1 & 0 & 6 & 3 / 4 & -1 / 4 & 0 \\
0 & 1 & -3 & -1 / 4 & 1 / 4 & 0 \\
0 & 0 & 1 & 5 / 56 & -3 / 56 & -1 / 56
\end{array}\right] R_{5} \rightarrow R_{3}\left(\frac{3}{14}\right) \\
& =\left[\begin{array}{lll|lll}
1 & 0 & 0 & B / 14 & 1 / c 4 & 5 / 56 \\
0 & 1 & 0 & 1 / 56 & 5 / 56 & -3 / 56 \\
0 & 0 & 1 & 5 / 56 & -356 & -1 / 56
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}-6 R_{3} \\
R_{2} \rightarrow R_{2}+3 R_{3}
\end{array} \\
& A^{-1}=\frac{1}{56}\left[\begin{array}{ccc}
12 & 4 & 6 \\
1 & 5 & -3 \\
5 & -3 & -1
\end{array}\right]
\end{aligned}
$$

(12) Using Jacobi Method, find the eigen values of $A=\left(\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right)$ Hints:

$$
\begin{aligned}
& \cot 2 \theta=\alpha= \\
& \begin{aligned}
& \cot \theta=\beta=\alpha \pm \sqrt{1+\alpha^{2}} 2 a_{22} \\
&=-1 / 2 \pm \sqrt{1+1 / 4} \\
& 6
\end{aligned} \\
&=\frac{-1}{2} \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { take } \beta=\frac{\sqrt{5}-1}{2}>0 \quad \sin \theta=\frac{1}{\sqrt{1+\beta^{2}}} \\
& =\frac{2}{\sqrt{10+2 \sqrt{5}}} \text { and } \cos \theta=\frac{\beta}{\sqrt{1+\beta^{2}}}=\frac{\sqrt{5}-1}{\sqrt{10+2 \sqrt{5}}} \\
& b_{11}=a_{11} \cos ^{2} \theta+a_{12} \sin 2 \theta+a_{22} \sin ^{2} \theta=\frac{5+315}{2} \\
& b_{22}=a_{11}+a_{22}-b_{11}=\frac{5-3 \sqrt{5}}{2} \\
& \therefore \text { eigen values are } \frac{5+3 \sqrt{3}}{2}, \frac{5-3 \sqrt{5}}{2} \\
& R=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
& \therefore \quad x_{1}=\binom{\sqrt{5}-1}{2} \geqslant x_{2}=\binom{-2}{\sqrt{5}-1}
\end{aligned}
$$

(13) find the largest eigen value and eigen vector of $\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7\end{array}\right)$ by using power Method
Soln

$$
\begin{aligned}
& A x_{2}=A x_{3}^{\prime}=7 x_{3}^{\prime} \\
& A x_{3}=A x_{3}^{\prime}=7 x_{4}^{\prime} \\
& A x_{4}=7 x_{5} \\
& \vdots \\
& A x_{10}=\left(\begin{array}{c}
3.924 \\
1.272 \\
7
\end{array}\right)=7\left(\begin{array}{c}
0.560 \\
0.182 \\
1
\end{array}\right) \\
& \therefore \text { eigen vector is }\binom{0.560}{0.1 .82} \\
& \text { The eigen value is } 7
\end{aligned}
$$

