UNIT II - FOURIER SERIES

$\underline{\text { PART -A }}$

1. State Dirichlet's condition (OR) State the sufficient condition for a function $f(x)$ to be expressed as a Fourier series.
ANS

- $f(x)$ is single valued, finite and periodic.
- $f(x)$ has a finite number of finite discontinuities.
- $f(x)$ has a finite number of maxima and minima.
- $f(x)$ has no infinite discontinuity.

2. State whether $y=\tan x$ can be expressed as a Fourier series. If so how? If not why?

ANS
$y=\tan x$ cannot be expressed as a Fourier series, since it has infinite number of infinite discontinuity.
3. Obtain the sum at $x=1$ of the Fourier series of $f(x)=\left\{\begin{array}{l}x, 0<x<1 \\ 2,1<x<2\end{array}\right.$.

ANS
Here $x=1$ is a discontinuous and middle point.
Sum at $\mathrm{x}=1=\frac{\mathrm{LHL}+\mathrm{RHL}}{2}=\frac{1+2}{2}=\frac{3}{2}$
4. Find the sum of the Fourier series of $f(x)=x+x^{2}$ in $(-\pi, \pi)$ at $x=\pi$.

ANS

Here $x=\pi$ is a discontinuous and end point.
Sum at $\mathrm{x}=\pi=\frac{\mathrm{f}(-\pi)+\mathrm{f}(\pi)}{2}=\frac{-\pi+\pi^{2}+\pi+\pi^{2}}{2}=\frac{2 \pi^{2}}{2}=\pi^{2}$
5. Find the constant term in the expansion of $\cos ^{2} x$ as a Fourier series in the interval $(-\pi, \pi)$.

ANS
Given $f(x)=\cos ^{2} x$
$f(-x)=\cos ^{2}(-x)=\cos ^{2}(x)$.
$\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})=\cos ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=2 \cos ^{2} \mathrm{x} \neq 0$.
$f(x)-f(-x)=\cos ^{2} x-\cos ^{2} x=0$
$\rightarrow \mathrm{f}(\mathrm{x})$ is an even function $\rightarrow \mathrm{b}_{\mathrm{n}}=0$.

$$
\begin{aligned}
a_{0} & =\frac{2}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} \cos ^{2} x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \frac{(1+\cos 2 x)}{2} d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}(1+\cos 2 x) d x \\
& =\frac{1}{\pi}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\pi}=\frac{1}{\pi}[\pi] \\
a_{0} & =1 .
\end{aligned}
$$

Constant Term $=\frac{a_{0}}{2}=\frac{1}{2}$.
6. Obtain the first term of the Fourier series for the function $f(x)=x^{2}$ in $-\pi<x<\pi$.

ANS
Given $f(x)=x^{2}$
$\mathrm{f}(-\mathrm{x})=(-\mathrm{x})^{2}=\mathrm{x}^{2}$
$f(x)+f(-x)=x^{2}+x^{2}=2 x^{2} \neq 0$.
$\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}^{2}=0$
$\rightarrow f(x)$ is an even function $\rightarrow b_{n}=0$.

$$
\begin{aligned}
a_{n} & =\frac{2}{2 \pi} \int_{-\pi}^{\pi} f(x) \cdot \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cdot \cos (n x) d x \\
& =\frac{2}{\pi}\left\{x^{2}\left[\frac{\sin (n x)}{n}\right]-2 x\left[\frac{-\cos (n x)}{n^{2}}\right]+2\left[\frac{-\sin (n x)}{n^{3}}\right]\right\}_{0}^{\pi} \\
& =\frac{2}{\pi}\left\{\frac{x^{2} \sin (n x)}{n}+\frac{2 x \cos (n x)}{n^{2}}-\frac{2 \sin (n x)}{n^{3}}\right\}_{0}^{\pi} \\
& =\frac{2}{\pi}\left\{\frac{2 \pi \cos (n \pi)}{n^{2}}\right\}=\frac{4(-1)^{n}}{n^{2}} \\
\therefore a_{n} & =\frac{4(-1)^{n}}{n^{2}} \Rightarrow a_{1}=-4
\end{aligned}
$$

7. If $\mathbf{x}^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n x)$ in $(-\pi, \pi)$, deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$

ANS
Put $\mathrm{x}=\pi$
Sumat $(x=\pi)=\frac{\pi}{3}^{2}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n \pi)$
$x=\pi$ is a discontinuous andendpoint.
$\frac{(-\pi)^{2}+\pi^{2}}{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}(-1)^{n}$
$\frac{2 \pi^{2}}{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
$4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\pi^{2}-\frac{\pi}{3}^{2}=\frac{2 \pi^{2}}{3}$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{2 \pi^{2}}{12}=\frac{\pi}{6}^{2}$
8. Give the expression for the Fourier series coefficient $b_{\mathbf{n}}$ for the function $f(x)$ defined in (2,2).
ANS
Here $\mathrm{L}=2$.
The expression for b_{n} in $(-1,1)$ is given by $b_{n}=\frac{2}{2 L} \int_{-L}^{L} f(x) \cdot \sin \left(\frac{n \pi x}{L}\right) d x$. Put $L=2$.
$\therefore b_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \cdot \sin \left(\frac{n \pi x}{2}\right) d x$.
9. Define Harmonic Analysis

ANS
The process of finding the Fourier series of a tabular function is called Harmonic Analysis.
10. Find the Root Mean square value of the function $f(x)=x$ in $(0, L)$.

ANS

$$
\begin{aligned}
R M S & =\sqrt{\frac{1}{b-a} \int_{a}^{b} f(x)^{2} d x} \\
& =\sqrt{\frac{1}{L} \int_{0}^{L} x^{2} d x} \\
& =\sqrt{\frac{1}{L}\left[\frac{x^{3}}{3}\right]_{x=0}^{L}}=\sqrt{\frac{1}{L}\left[\frac{L^{3}}{3}\right]}=\sqrt{\frac{L^{2}}{3}} .
\end{aligned}
$$

$\underline{\text { PART - B }}$

1. Find the Fourier Series of $f(x)=x^{2}$ in $(0,2 \pi)$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.
2. Expand $f(x)=x(2 \pi-x)$ as a Fourier Series in $(0,2 \pi)$ and hence deduce that the sum of $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.
3. Obtain the Fourier series of the function $f(x)=\left\{\begin{array}{l}1-x,-\pi<x<0 \\ 1+x, 0<x<\pi\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
4. Obtain the Fourier Series of $f(x)=x+x^{2}$ in $(-\pi, \pi)$. Deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{1}}=\frac{\pi^{2}}{6}$
5. Obtain the Fourier series of the function $f(x)=\left\{\begin{array}{l}-\pi,-\pi<x<0 \\ x, 0<x<\pi\end{array}\right.$. Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
6. Find the Fourier series for $f(x)=x^{2}$ in $(-\pi, \pi)$. Hence deduce that $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots=\frac{\pi^{4}}{90}$
7. Find the Half range cosine series of $f(x)=x(\pi-x)$ in $0<x<\pi$. Hence deduce that $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\cdots=\frac{\pi^{4}}{90}$
8. Find the half range cosine series of $f(x)=(x-1)^{2}$ in $0<x<1$.
9. Find the Half range sine series for $f(x)=x$ in $(0, \pi)$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
10. Find the Half range sine series of a function $f(x)=x(\pi-x)$ in $0<x<\pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}}=\frac{\pi^{3}}{32}$.
11. Find the Fourier series up to second harmonic for $y=f(x)$ from the following table.

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$y=f(x)$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

12. Find the Fourier series up to second harmonic for the following function

x	0	1	2	3	4	5
$y=f(x)$	9	18	24	28	26	20

13. Compute up to second harmonic of the Fourier series of $f(x)$ given by the following table.

x	0	$T / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
$\mathrm{y}=\mathrm{f}(\mathrm{x})$	1.98	1.30	1.05	1.30	-0.88	-.25	1.98

