

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY COURSE PLAN (THEORY)

ACADEMIC YEAR: 2018-2019

Subject Code	CE6702	L	P	Т	С	
Subject Title	PRESTRESSED CONCRETE STRUCT	3	0	0	3	
Year / Dept / Sem	IV / CIVIL / VII	Year	/ear 2013			
Faculty Name / Desg / Dept	M _S .R.SWATHIKA.M.E.,/ Assistant Professor / CIVIL					
Course Prerequisite	1. The students must have more knowledge about basic fundamentals of mathematics.					
	2. They have more details about types of concrete structures and basic concepts about prestress.				basic	

SYLLABUS

CE6702

PRESTRESSED CONCRETE STRUCTURES

LTPC 3003

UNIT I INTRODUCTION - THEORY AND BEHAVIOUR

q

Basic concepts – Advantages – Materials required – Systems and methods of prestressing – Analysis of sections – Stress concept – Strength concept – Load balancing concept – Effect of loading on the tensile stresses in tendons – Effect of tendon profile on deflections – Factors influencing deflections – Calculation of deflections – Short term and long term deflections – Losses of prestress – Estimation of crack width.

UNIT II DESIGN FOR FLEXURE AND SHEAR

9

Basic assumptions for calculating flexural stresses – Permissible stresses in steel and concrete as per I.S.1343 Code – Design of sections of Type I and Type II post-tensioned and pre-tensioned beams – Check for strength limit based on I.S. 1343 Code – Layout of cables in post-tensioned beams – Location of wires in pre-tensioned beams – Design for shear based on I.S. 1343 Code.

UNIT III DEFLECTION AND DESIGN OF ANCHORAGE ZONE

9

Factors influencing deflections – Short term deflections of uncracked members – Prediction of long term deflections due to creep and shrinkage – Check for serviceability limit state of deflection. Determination of anchorage zone stresses in post-tensioned beams by Magnel"s method, Guyon's method and IS1343 code – design of anchorage zone reinforcement – Check for transfer bond length in pre-tensioned beams.

UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS

9

Analysis and design of composite beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments – Concordant cable and linear transformation – Calculation of stresses – Principles of design.

UNIT V MISCELLANEOUS STRUCTURES

9

Design of tension and compression members – Tanks, pipes and poles – Partial prestressing – Definition, methods of achieving partial prestressing, merits and demerits of partial prestressing.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Krishna Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012
- 2. Pandit.G.S. and Gupta.S.P. "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.

REFERENCES:

- 1. Rajagopalan.N, "Prestressed Concrete", Narosa Publishing House, 2002.
- 2. Dayaratnam.P., "Prestressed Concrete Structures", Oxford and IBH, 2013
- 3. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 4. IS1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012

	CO1: To introduce the need for prestressing as well as the methods, types and advantages of prestressing to the students.
Course Objectives (CO)	CO2: Students will be introduced to the design of prestressed concrete structures subjected to flexure.
	CO3: Students will be introduced to the design of prestressed concrete structures subjected to shear.
	CO4: Calculate prestress losses for simple prestressed concrete girders.
	CO5: Design prestressed concrete girders for flexure using current design procedures
	CO6 : Construct moment-curvature and load-deflection curves for a prestressed concrete beam

Expected Course Outcomes (ECO)				At the end of the course, the students should be able to: ECO1: Student shall have knowledge on methods of prestressing ECO2: Able to design various prestressed concrete structural elements.									
N	Mapping of CO & PO(Specify the PO's) - (Fill the col.s with the legend given below)												
	P01	P02	P03	F	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	1	-	2		-	-	-	-	-	-	-	3	-
CO2	-	-	-		-	-	2	-	-	-	-	3	-
CO3	2	3	3		-	-	-	3	-	-	-	-	-
CO4	-	-	-		-	-	-	3	3	-	-	2	-
CO5	3	3	2		-	3	-	2	3	-	3	-	3
C06	3	3	3		-	3	-	-	-	-	-	-	-
Bridging the Curriculum Gap (Additional Topics beyond syllabus/Seminars/Assignmen ts)				BCG BCG	52: Pre 53: The		ed Box E al applic	Beams ation of	partial _I	orestress /9	sing		
Related Website URLs				W1: http://nptel.ac.in/courses/105106118/9 W2: www library.ctr.utexas.edu/ctr-publications/0-5831-3.pdf.pdf W3: www.e-periodica.ch/cntmng?pid=bse-cr-001:1968:8::203									
Related Video Course Materials (min. 3 no.s)				V2: i	https:/		outube.c	com/wat	ch?v=pjv	wrXLWh .nV-fdf9l			

S.No	Topic Name	Book - P. No	Teaching Aids	No of hrs	Cumulative hrs			
	UNIT I INTRODUCTION - THEORY AND BEHAVIOUR							
1.	Basic concepts – Advantages – Materials required-	T1 1-19	Class room teaching	1	1			
2. Systems and methods of prestressing		T1 73-87	Assignments	1	2			
3.	Analysis of sections – Stress concept –	T1	Class room	1	3			

		90-97	teaching		
_	Strength concept – Load balancing	T1	Class room		_
4.	concept	97-110	teaching	1	4
_	Effect of loading on the tensile stresses	T1	Class room		_
5.	in tendons –	112-114	teaching	1	5
	Effect of tonden muchle on deflections	T1	Class room	1	
6.	Effect of tendon profile on deflections	114-117	teaching	1	6
7.	Factors influencing deflections -	T1	Class room	2	8
/.	Calculation of deflections	151-152	teaching		O
8.	Short term and long term deflections	T1	Class room	2	10
0.		152-160	teaching		10
	Losses of prestress – Estimation of	T1	Class room		4.0
9.	crack width.	124-141	teaching	2	12
	UNIT II DESIGN I	OD ELEVIID	E AND SHEAR		
	Basic assumptions for calculating	T1	Class room	1	13
1.	flexural stresses	192-193	teaching	1	13
	Permissible stresses in steel and	T1	Class room	2	15
2.	concrete as per I.S.1343 Code	192-204	teaching		13
	Design of sections of Type I and Type II	T1	Class room	2	17
3.	post-tensioned beams	337-342	teaching		1,
	Design of sections of Type I and Type II	T1	Class room	2	19
4.	pre-tensioned beams	342-354	teaching	_	
_	Check for strength limit based on I.S.	T1	Class room	2	21
5.	1343 Code	323-325	teaching		
	Layout of cables in post-tensioned	T1	J	1	22
6.	beams - Location of wires in pre-	332-334	Assignments		
	tensioned beams		_		
7.	Design for shear based on I.S. 1343	T1	Class room	2	24
	Code.	244-248	teaching	ZONE	
1			OF ANCHORAGE		25
1.	Factors influencing deflections – Short term deflections of uncracked members	T1 151-152	Assignments	1	25
	Prediction of long term deflections due	T1	Class va om	2	27
2.	to creep and shrinkage	160-163	Class room		27
	Check for serviceability limit state of	T1	teaching Class room	1	28
3.	deflection.	163	teaching	1	20
	Determination of anchorage zone	T1	Class room	2	30
4.	stresses in post-tensioned beams by	288-294	teaching	_	30
	Magnel"s method	200 271	teaching		
	Determination of anchorage zone	T1	Class room	2	32
5.	stresses in post-tensioned beams by	295-300	teaching		
	Guyon's method	m.4	Q1		22
4	Determination of anchorage zone	T1	Class room	1	33
6.	stresses in post-tensioned beams by IS1343 code	304	teaching		
	Design of anchorage zone	T1	Class room	2	35
7.	reinforcement	305-311	teaching		33
	Check for transfer bond length in pre-	T1	Class room	1	36
8.	•	312	teaching	_	
	tensioned beams.				

	UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS						
1.	Analysis and design of composite beams	T1	Class room	2	38		
1.	Analysis and design of composite beams		teaching				
2.	Methods of achieving continuity in	T1	Class room	2	40		
۷.	continuous beams	440	teaching				
3.	Analysis for secondary moments	T1	Class room	2	42		
J.	Analysis for secondary moments	442	teaching				
4.	Concordant cable and linear	T1	Class room	2	44		
4.	transformation	456-458	teaching				
5.	Calculation of stresses	T1	Class room	2	46		
J.	Calculation of stresses	468-471	teaching				
6.	Principles of design	T1	Class room	2	48		
6. Principles of design		472	teaching				
	UNIT V MISCEL	LANEOUS ST	TRUCTURES				
1.	Design of tension and compression	T1	Class room	1	49		
1.	members	73-87	teaching				
2.	Tanks	T1	Class room	2	51		
۷.		511-517	teaching				
3.	Pipes	T1	Class room	2	53		
J.		491-499	teaching				
4.	Pole	T1	Class room	2	55		
7.		574-581	teaching				
5.	Partial prestressing	T1	Class room	2	57		
J.		395	teaching				
6.	Definition, methods of achieving partial	T1	Seminars	2	59		
υ.	prestressing	397-398	Sciiiiiai S				
7.	Merits and demerits of partial	T1	Seminars	1	60		
/.	prestressing.	396	Jenniars				

	Prepared by	Approved by
Signature		
Name	Ms.R.SWATHIKA	Mr.P.SURESHKUMAR
Designation	Assistant Professor / CIVIL	Assistant Professor & HOD (CIVIL)
Signed date		

LEGEND:

METHODOLOGY TO MAP OBJECTIVE WITH OUTCOME

Course outcomes are achieved through

- a. Suitable Analogies.
- **b.** Class room teaching.
- **c.** Assignments.
- **d.** Tutorials
- e. Weekly, monthly and model exams.
- **f.** Brain storming.
- **g.** Group discussion and role play.
- h. Seminars