SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY COURSE PLAN (THEORY) ACADEMIC YEAR: 2018-2019(Odd) | Subject Code | CE6502 | | L | P | Т | С | |----------------------------|--|---------------|--------|-------|--------|--------| | Subject Title | FOUNDATION ENGINEERING | | | 0 | 0 | 3 | | Year / Dept / Sem | III / CIVIL / V Regulation | | Year | 2013 | | | | Faculty Name / Desg / Dept | Mr.K.KALIRAJAN M.E., / Assistant Professor / CIVIL | | | | | | | Course Prerequisite | 1. The students must have details about site investigate techniques. | | | | gation | | | | 2. They have more details at foundations. | oout properti | ies of | piles | and ty | pes of | #### **SYLLABUS** CE6502 FOUNDATION ENGINEERING LTPC 3003 ## UNIT I SITE INVESTIGATION AND SELECTION OF FOUNDATION Scope and objectives – Methods of exploration – auguring and boring – Wash boring and rotary drilling – Depth of boring – Spacing of bore hole – Sampling techniques – Representative and undisturbed sampling – methods - Split spoon sampler, Thin wall sampler, Stationery piston sampler – Penetration tests (SPT and SCPT) - Bore log report – Data interpretation - strength parameters and Liquefaction potential - Selection of foundation based on soil condition. #### UNIT II SHALLOW FOUNDATION 9 Introduction – Location and depth of foundation – Codal provisions – bearing capacity of shallow foundation on homogeneous deposits – Terzaghi's formula and BIS formula – factors affecting bearing capacity – problems – Bearing capacity from in-situ tests (SPT, SCPT and plate load)Allowable bearing pressure – Seismic considerations in bearing capacity evaluation. Determination of Settlement of foundations on granular and clay deposits – Total and differential settlement – Allowable settlements – Codal provision – Methods of minimizing total and differential settlements. #### UNIT III FOOTINGS AND RAFTS 9 Types of footings – Contact pressure distribution: Isolated footing – Combined footings – Types and proportioning – Mat foundation – Types and applications – Proportioning – Floating foundation – Seismic force consideration – Codal Provision. #### UNIT IV PILE FOUNDATION 9 Types of piles and their function – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – static formula – dynamic formulae (Engineering news and Hileys) – Capacity from insitu tests (SPT and SCPT) – Negative skin friction – uplift capacity- Group capacity by different methods (Feld's rule, Converse – Labarra formula and block failure criterion) – Settlement of pile groups – Interpretation of pile load test (routine test only) – Under reamed piles – Capacity under compression and uplift. ### UNIT V RETAINING WALLS 9 Plastic equilibrium in soils – active and passive states – Rankine's theory – cohesionless and cohesive soil – Coulomb's wedge theory – Condition for critical failure plane – Earth pressure on retaining walls of simple configurations – Culmann Graphical method – pressure on the wall due to line load – Stability analysis of retaining walls. **TOTAL: 45 PERIODS** #### **TEXT BOOKS:** - 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers and Distributers Ltd., New Delhi, 2007. - 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", New Age International Pvt. Ltd, New Delhi. 2005. - 3. Purushothama Raj. P., "Soil Mechanics and Foundation Engineering", 2nd Edition, Pearson Education, 2013 - 4. Varghese, P.C., "Foundation Engineering", Prentice Hall of India Private Limited, New Delhi, 2005 **REFERENCES:** - 1. Das, B.M. "Principles of Foundation Engineering" 5th edition, Thompson Asia Pvt.Ltd., Singapore, 2003. - 2. Kaniraj, S.R. "Design aids in Soil Mechanics and Foundation Engineering", Tata McGraw Hill Publishing company Ltd., New Delhi, 2002. - 3. Punmia, B.C. "Soil Mechanics and Foundations", Laxmi Publications Pvt.Ltd., New Delhi,2005 - 4. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 2007 (Reprint) - 5. Arora K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 2005. - 6. IS 6403: 1981 (Reaffirmed 1997) "Breaking capacity of shallow foundation", Bureau of Indian Standards, New Delhi, 1998 - 7. IS8009 (Part1):1976 (Reaffirmed 1998) "Shallow foundations subjected to symmetrical static vertical loads", Bureau of Indian Standards, New Delhi, 1999 - 8. IS8009 (Part2):1980 (Reaffirmed 1995) "Deep foundations subjected to symmetrical static vertical loading", Bureau of Indian Standards, New Delhi, 1992 - 9. IS2911(Part1):1979 (Reaffirmed 1997) "Concrete Piles" Bureau of Indian Standards, New Delhi, 1994 - 10. IS2911(Part2):1979 (Reaffirmed 1997) "Timber Piles",Bureau of Indian Standards, New Delhi, 2007 - 11. IS2911(Part 3):1979 (Reaffirmed 1997) "Under Reamed Piles", Bureau of Indian Standards, New Delhi, 1998 - 12. IS2911 (Part 4):1979 (Reaffirmed 1997) "Load Test on Piles", Bureau of Indian Standards, New Delhi, 1997 | 1997 | | | | | |------------------------|---|--|--|--| | | CO1: To impart knowledge on common method of sub soil investigation | | | | | | CO2: To introduce students about design of foundation. | | | | | Course Objectives (CO) | CO3: Students will be introduced to properties of various piles commonly used in civil engineering construction. | | | | | | CO4: student acquires the capacity to investigate the soil condition and to select and design a suitable foundation | | | | | | CO5: To introduce students to know the fundamental behaviours of retaining walls and its types | | | | | | | | | | | Expected Course Outcomes (ECO) Mapping of CO & PO(Sp | | | | ECO1. ECO2. ECO3. ECO4. | Studen
requir
found
Compa
constr
Unders
metho
Unders
behav
Unders
mater | nts will red for the ation and the ruction. Stand the ds used stand the iours of stand the iours of stand the iours of the ial property of the ial property is the interest of the ial property of the ial property is the interest of the ial property is the interest of the ial property is i | have the have the soil deep for prope e typica in site in erelation retaining the imponenties. | e ability at a pla oundation rties of and provestigationship begwalls. | y to sel
ace and
on.
f piles
otential
tion.
etween a | e able to ect type able to used applica material rimental | of foundesign s in b tions of propert | shallow
building
boring
ties and | |---|--|---------|--------|---|---|--|--|--|--|---|---------------------------------------|---| | | | | | | | | | | | | | | | | P01 | PO2 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | | CO1 | 2 | - | 1 | - | - | - | 2 | - | 1 | - | - | - | | CO2 | - | 1 | - | - | - | - | 1 | - | 2 | 2 | - | 2 | | CO3 | 1 | - | 1 | 2 | - | - | - | - | - | - | - | 2 | | CO4 | 1 | 2 | - | 2 | - | - | ı | - | - | - | - | - | | CO5 | 2 | - | 1 | - | - | - | - | - | 2 | 1 | 1 | 2 | | Bridging th | e Curri | culum (| Gap | BCG1: boring methods and sampling types | | | | | | | | | | (Additional | Top | pics | beyond | BCG2: | seismic | behavio | ur of ret | taining v | vall | | | | | syllabus/Sei | syllabus/Seminars/Assignments) | | | | BCG3: caisson piles | | | | | | | | | Related Web | W1: http://www.iitk.ac.in/nicee/wcee/article/8-vol3-533.pdf W2: http://www.iitk.ac.in/nicee/wcee/article/1496.pdf W3: http://www.nbmcw.com/articles/miscellaneous/others/25055- piled-raft-foundation for-seismic-performance-of-tall-buildings.html | | | | | | | | | | | | | Related Video Course Materials (min. 3 no.s) | | | | <i>V2:</i> htt | tps://wv | vw.youtu
ww.yout
vw.youtu | ube.com | /watch? | ?v=H6-J8 | BLuTa-M | [| | | S.No | Topic Name | Book -
P. No | Teaching
Aids | No of
hrs | Cumulative
hrs | |------|---|-----------------|------------------------|--------------|-------------------| | | UNIT I SITE INVESTIGATION | TION OF FOUND | ATION | | | | 1. | Scope and objectives – Methods of exploration | T1
581-583 | Class room
teaching | 1 | 1 | | 2. | Auguring and boring Wash boring and rotary drilling | T1
583-585 | Class room
teaching | 2 | 3 | | 3. | Depth of boring – Spacing of bore hole | T1
586-590 | Assignments | 1 | 4 | | 4. | Sampling techniques – Representative and undisturbed sampling | T1
590-596 | Class room
teaching | 1 | 5 | | |----|---|---------------|------------------------|---|----|--| | 5. | Sampling methods | T1 596-597 | Class room
teaching | 2 | 7 | | | 6. | Split spoon sampler, Thin wall sampler, Stationery piston sampler | T1 598-600 | Class room
teaching | 2 | 9 | | | 7. | Penetration tests (SPT and SCPT) - Bore log report – Data interpretation | T1 601-605 | Seminars | 1 | 10 | | | 8. | strength parameters and Liquefaction potential | T1 606-609 | Class room
teaching | 1 | 11 | | | 9. | Selection of foundation based on soil condition. | T1
610-613 | Assignments | 1 | 12 | | | | UNIT II SHA | LLOW FOUN | NDATION | | | | | 1. | Introduction – Location and depth of foundation – Codal provisions | T1
619-620 | Class room
teaching | 1 | 13 | | | 2. | Bearing capacity of shallow foundation
on homogeneous deposits- Terzaghi's
formula and BIS formula | T1
621-630 | Class room
teaching | 1 | 14 | | | 3. | factors affecting bearing capacity-
problems | T1
630-635 | Assignments | 2 | 16 | | | 4. | Bearing capacity from in-situ tests (SPT, SCPT and plate load)Allowable bearing pressure | T1
635-640 | Class room
teaching | 2 | 18 | | | 5. | Seismic considerations in bearing capacity evaluation. Determination of Settlement of foundations on granular and clay deposits | T1
640-659 | Class room
teaching | 2 | 20 | | | 6. | Total and differential settlement –
Allowable settlements – Codal provision | T1
659-663 | Class room
teaching | 2 | 22 | | | 7. | Methods of minimizing total and differential settlements. | T1
665-694 | Class room
teaching | 2 | 24 | | | | UNIT III F | OOTINGS AN | | | | | | 1. | Types of footings | T1
694-695 | Class room
teaching | 1 | 25 | | | 2. | Contact pressure distribution | T1
695-697 | Class room
teaching | 2 | 27 | | | 3. | Contact pressure distribution: Isolated footing – Combined footings | T1
697-700 | Assignments | 1 | 28 | | | 4. | Mat foundation introduction | T1
701-702 | Class room
teaching | 2 | 30 | | | 5. | Mat foundation Types and applications | T1
702-705 | Class room
teaching | 2 | 32 | | | 6. | Types and proportioning | T1
705-707 | Class room
teaching | 1 | 33 | | | 7. | Proportioning – Floating foundation | T1
708-710 | Class room
teaching | 2 | 35 | | | 8. | Seismic force consideration – Codal
Provision | T1
710-717 | Seminars | 1 | 36 | | | _ | UNIT IV PILE FOUNDATION | | | | | | | 1. | Types of piles and their function | T1 | Class room | 2 | 38 | | | | | 723-725 | teaching | | | |----------------|--|--|---|-------|----------------| | 2. | Factors influencing the selection of pile - Carrying capacity of single pile in granular and cohesive soil | T1
440 | Class room
teaching | 2 | 40 | | 3. | static formula – dynamic formulae (Engineering news and Hileys) | T1
442 | Class room
teaching | 2 | 42 | | 4. | Capacity from insitu tests (SPT and SCPT) – Negative skin friction – uplift capacity | T1
456-458 | Class room
teaching | 2 | 44 | | 5. | Group capacity by different methods (Feld's rule, Converse – Labarra formula and block failure criterion) | T1
468-471 | Class room
teaching | 2 | 46 | | 6. | Settlement of pile groups – Interpretation of pile load test (routine test only) – Under reamed piles Capacity under compression and uplift. | T1
472 | Class room
teaching | 2 | 48 | | | UNIT V R | ETAINING W | VALLS | | | | 4 | Plastic equilibrium in soils – active | Т4 | | | | | 1. | and passive states | T1
480-482 | Class room
teaching | 1 | 49 | | 2. | • | | | 2 | 49
51 | | | and passive states Rankine's theory – cohesionless and | 480-482
T1 | teaching
Class room | | - | | 2. | and passive states Rankine's theory – cohesionless and cohesive soil Coulomb's wedge theory – Condition | 480-482
T1
483-485
T1 | teaching Class room teaching Class room | 2 | 51 | | 2.
3. | and passive states Rankine's theory – cohesionless and cohesive soil Coulomb's wedge theory – Condition for critical failure plane Earth pressure on retaining walls of | 480-482
T1
483-485
T1
490-492 | teaching Class room teaching Class room teaching Class room | 2 | 51
53 | | 2.
3.
4. | and passive states Rankine's theory – cohesionless and cohesive soil Coulomb's wedge theory – Condition for critical failure plane Earth pressure on retaining walls of simple configurations | 480-482
T1
483-485
T1
490-492
T1
499-501 | teaching Class room | 2 2 2 | 51
53
55 | | | Prepared by | Approved by | |-------------|-----------------------------|---------------------| | | | | | Signature | | | | | | | | Name | Mr.K.KALIRAJAN | Prof.P.SURESH KUMAR | | Designation | Assistant Professor / CIVIL | HOD /CIVIL | | Signed date | | | ## **LEGEND:** # METHODOLOGY TO MAP OBJECTIVE WITH OUTCOME Course outcomes are achieved through a. Suitable Analogies.b. Class room teaching. - c. Assignments.d. Tutorials - **e.** Weekly, monthly and model exams. - f. Brain storming.g. Group discussion and role play.h. Seminars