

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY COURSE PLAN (THEORY)

ACADEMIC YEAR: 2018-2019(Even)

Subject Code	CE8491			P	Т	С
Subject Title	SOIL MECHANICS			0	0	3
Year / Dept / Sem	II / CIVIL / IV Regulation			Year 2017		
Faculty Name / Desg / Dept	Mr.K.KALIRAJAN M.E., / Assistant Professor / CIVIL					
Course Prerequisite	1. The students must have details about fundamental applications of fluid mechanics in geotechnical engineering.			ons of		
	2. They have more details about properties of soils properties					

SYLLABUS

CE8491 SOIL MECHANICS

3003

LTPC

UNIT I SOIL CLASSIFICATION AND COMPACTION

9

History – formation and types of soil – composition - Index properties – clay mineralogy structural arrangement of grains – description – Classification – BIS – US – phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction.

UNIT II EFFECTIVE STRESS AND PERMEABILITY

9

Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary phenomena - Permeability - Darcy's law - Determination of Permeability - Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer - Factors influencing permeability of soils - Seepage - Two dimensional flow - Laplace's equation - Introduction to flow nets - Simple problems Sheet pile and wier.

UNIT III STRESS DISTRIBUTION AND SETTLEMENT

9

Stress distribution in homogeneous and isotropic medium – Boussines of theory – (Point load, Line load and udl) Use of Newmarks influence chart –Components of settlement – Immediate and consolidation settlement – Factors influencing settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. – \sqrt{t} and log t methods. e-log p relationship consolidation settlement N-C clays – O.C clays – Computation.

UNIT IV SHEAR STRENGTH

(

Shear strength of cohesive and cohesion less soils - Mohr-Coulomb failure theory - shear strength - Direct

shear, Triaxial compression, UCC and Vane shear tests – Pore pressure parameters – Factors influences shear strength of soil.

UNIT V SLOPE STABILITY

9

Infinite slopes and finite slopes — Friction circle method – Use of stability number –Guidelines for location of critical slope surface in cohesive and c - soil – Slope protection measures.

TOTAL: 45 PERIODS

TEXT BOOKS:

- Murthy, V.N.S., "Text book of Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2014
- 2. Arora, K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 7th Edition, 2017(Reprint).
- 3. Gopal Ranjan, A S R Rao, "Basic and Applied Soil Mechanics" New Age International Publication, 3rd Edition, 2016.
- 4. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 16th Edition, 2017.

REFERENCES:

- 1. McCarthy, D.F., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics". Prentice-Hall, 2006.
- 2. Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt. Ltd. New Delhi, 2010.
- 3. Braja M Das, "Principles of Geotechnical Engineering", Cengage Learning India Private Limited, 8th Edition, 2014.
- 4. Palanikumar.M., "Soil Mechanics", Prentice Hall of India Pvt. Ltd, Learning Private Limited Delhi, 2013.
- 5. Craig.R.F., "Soil Mechanics", E & FN Spon, London and New York, 2012.
- 6. Purushothama Raj. P., "Soil Mechanics and Foundations Engineering",2_{nd} Edition, Pearson Education, 2013.
- 7. Venkatramaiah.C., "Geotechnical Engineering", New Age International Pvt. Ltd., New Delhi, 2017

Course Objectives (CO)	CO1: To impart knowledge to classify the soil based on index properties and to assess their engineering properties based on the classification. CO2: To familiarize the students about the fundamental concepts of compaction, flow through soil, stress transformation and stress distribution of soils. CO3: To impart knowledge of design of both finite and infinite slopes CO4: To introduce students about the fundamental concepts of consolidation and shear strength of soils. CO5: To impart knowledge of soil settlements and its types.
------------------------	---

Expected Course Outcomes (ECO)			At the end of the course, the students should be able to:							
			ECO1. Understand the stress concepts in soils							
			ECO2. Understand and identify the settlement in soils.							
			ECO3. Determine the shear strength of soil							
			ECO4. A	ECO4. Analyze both finite and infinite slopes.						
N	Mapping o	of CO & PO	(Specify	the PO's)	- (Fill th	e col.s wi	th the leg	end given	below)	
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10
CO1	1	2	-	-	-	-	-	-	-	-
CO2	-	1	-	-	-	-	-	2	2	-
CO3	-	2	-	-	-	-	-	-	1	-
CO4	1	-	2	-	-	-	-	2	-	1
CO5	-	1	1	-	-	-	-	-	1	2
Bridging the Curriculum Gap			BCG1: Components of settlements & plate load test.							
(Additional	Topics	beyond	BCG2: Various test to find Bearing capacity of soil.							
syllabus/Se	minars/A	ssignmen								
ts)	BCG3: Sampling techniques & site investigation methods									
	W1: http://nptel.ac.in/courses/105107118/9									
Related Website URLs			W2: www library.ctr.utexas.edu/ctr-publications/0-5931-3.pdf							
	W3: www.e-periodica.ch/cntmng?pid=bse-cr-001:1838:8::203									
Deleted Video Course			V1: https://youtu.be/UzuVARqd4DII							
Related Video Course Materials (min. 3 no.s)			V2: https://www.youtube.com/watch?v=qjwrXLWhISE							
			V3: https://www.youtube.com/watch?v=HLnV-fdf8k							
<u> </u>										

S.No	Topic Name	Book - P. No	Teaching Aids	No of hrs	Cumulative hrs		
	UNIT I SOIL CLASSIFICATION AND COMPACTION						
1.	History – formation and types of soil	T4 1-8	Class room teaching	1	1		
2.	composition - Index properties	T4 37-87	Class room teaching	2	3		
3.	clay mineralogy structural arrangement of grains- description	T4 133-142	Assignments	1	4		
4.	Classification – BIS – US	T4 111-132	Class room teaching	1	5		
5.	phase relationship	T4 9-30	Class room teaching	2	7		

-								
6.	Compaction – theory	T4 407	Class room teaching	2	9			
7.	laboratory and field technology	T4 407-412	Seminars	1	10			
8.	field Compaction method	T4 413	Class room teaching	1	11			
9.	Factors influencing compaction.	T4 414	Assignments	1	12			
	UNIT II EFFECTIVE		PERMEABILITY					
	ONTH EFFECTIVE	T4	Class room					
1.	Soil - water – Static pressure in water	147	teaching	1	13			
2.	Effective stress concepts in soils – Capillary phenomena	T4 149-157	Class room teaching	1	14			
3.	Permeability – Darcy's law	T4 177-178	Assignments	2	16			
4.	Determination of Permeability – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer	T4 179-198	Class room teaching	2	18			
5.	Factors influencing permeability of soils – Seepage	T4 183&223	Class room teaching	2	20			
6.	Two dimensional flow – Laplace's equation	T4 230-231	Class room teaching	2	22			
7.	Introduction to flow nets – Simple problems Sheet pile and wier.	T4 232-249	Class room teaching	2	24			
	UNIT III STRESS DISTRIBUTION AND SETTLEMENT							
	Stress distribution in homogeneous and	T4						
1.	isotropic medium	295	Class room teaching	1	25			
2.	Boussines of theory – (Point load, Line load and udl) Use of Newmarks influence chart	T4 296-312	Class room teaching	2	27			
3.	Components of settlement – Immediate and consolidation settlement	T4 680	Assignments	2	29			
4.	Factors influencing settlement	T4 686	Class room teaching	1	30			
5.	Terzaghi's one dimensional consolidation theory	T4 346	Class room teaching	2	32			
6.	Computation of rate of settlement. – \sqrt{t} and log t methods.	T4 355	Class room teaching	1	33			
7.	e-log p relationship consolidation settlement N-C clays –	T4 348-370	Class room teaching	2	35			
8.	O.C clays – Computation.	T4 395	Seminars	1	36			
	UNIT IV SHEAR STRENGTH							
	Shear strength of cohesive and	T4						
1.	cohesion less soils	427	Class room teaching	2	38			
2.	Mohr-Coulomb failure theory	T4 430-432	Class room teaching	2	40			

3.	shear strength - Direct shear	T4 434-435	Class room teaching	2	42		
4.	Triaxial compression, UCC and Vane shear tests	T4 436-452	Class room teaching	2	44		
5.	Pore pressure parameters	T4 452	Class room teaching	2	46		
6.	Factors influences shear strength of soil.	T4 465	Class room teaching	2	48		
	UNIT V SLOPE STABILITY						
1.	Infinite slopes and finite slopes	T4 603-608	Class room teaching	2	50		
2.	Friction circle method	T4 611	Class room teaching	2	52		
3.	Use of stability number	T4 621	Class room teaching	2	54		
4.	Guidelines for location of critical slope	T4 615	Class room teaching	2	56		
5.	surface in cohesive and c – soil	T4 611	Class room teaching	2	58		
6.	Slope protection measures.	T4 632	Seminars	2	60		

	Prepared by	Approved by
Signature		
Name	Mr.K.KALIRAJAN	Prof.P.GANESAN
Designation	Assistant Professor / CIVIL	HOD /CIVIL
Signed date		

LEGEND:

METHODOLOGY TO MAP OBJECTIVE WITH OUTCOME

Course outcomes are achieved through

- a. Suitable Analogies.
- **b.** Class room teaching.
- **c.** Assignments.
- **d.** Tutorials
- e. Weekly, monthly and model exams.f. Brain storming.
- g. Group discussion and role play.
- h. Seminars