115 UNIT-11 : DESIGN OF JENSION MEMBERS. T-2 TOS) (03 8 x 3 2) (00 8 x 7 2) A Structural member subjected to two pulling torces applaid at its end is called tention members. Types of tension members : 1: wires & cables 2. Rods and bars 3. Single structural shapes & plates. 4. build up member. Design strength & tonium Member: 1. Design strength due to yielding of Gross section (Todg) 2. Repture strength of critical section (Tan) 3. Design strongth due to block shear (7db) (from code pg: 32 section 6 all classes) 1. Delarmine the design strongth of the plate 130 mm x 12 mm. with the holes for 16mm diameter fro boths as sohn in fig. the Steel is feno grade.

Step 1: Strength due to (130x12) x250 mm ast Tdg = 384. FAFKN Jan = 0.9 x 11 28 x 410 STATE OF STATE OF A PONTE 11x EV = 332,985KM. Sud- BP. PHH 2

SEP-1: Frength due to yielding:

$$Ag = \frac{Ag \cdot fy}{2m_0}.$$

$$Ag = \left[(90 - 6/2) + (60 - 6/3) \right] \times 6$$

$$Ag = \frac{86 \text{h} \text{mm}}{2}.$$

$$= \frac{86 \text{h} \text{mm}}{2}.$$

$$= \frac{196.36 \text{h} \text{mm}}{2}.$$

$$= \frac{196$$

$$B = 1.4 - 0.076(40/e)(13/hu)(13/e)$$

$$= 1.4 - 0.076x \frac{60}{6} \times \frac{260}{410} \times \frac{99}{400}$$

$$= 1.17 \leq \frac{4u mo}{200} \times \frac{99}{410} \times \frac{99}{400}$$

$$= 1.17 \times \frac{99}{200} \times \frac{99}{200} \times \frac{99}{200}$$

$$= \frac{1.17 \times 34 \times 250}{1.25}$$

$$= \frac{1.17 \times 34 \times 250}{1.25} \times \frac{1.17 \times 34 \times 250}{1.25}$$

$$= \frac{1.17 \times 34 \times 250}{1.25} \times \frac{1.17 \times 34 \times 250}{1.25}$$

$$= \frac{1.17 \times 34 \times 250}{1.25} \times \frac{1.17 \times 34 \times 250}{1.25} \times \frac{1.17 \times 34 \times 250}{1.25}$$

$$= \frac{1.17 \times 34 \times 250}{1.25} \times \frac{1.17 \times$$


```
An = (90-6/2)-18]x6 = 522 mm

Ago = (90-6/2)6 = 522 mm
       w=qomm.
       wi = 60 = 80 mm ! X &V
      bs = w+wi-t=90+30-6=114mm
     be = 4x50 = 200mm.

18 = 1.4 - 0.076 (w/t) (fy/tu) (bs/tc)
        2 1-4 - 0.096 x 90 12 416 × 114 200
      Tan = 0. X HIHX HID + 1x 52 8 x 250
  Step-3: Strongth due to block shear.
  Avg: (30+(4x50))x6=1380mm2
Atg: 30x6 = 180 mm2
       DVn = [ 30+ (4x50) - (4.5x 18)] x6
        An = [30 - (0.5x18)]6
```

	Tdb, = Avg fy + 0.9 Ab fu 7moxV3 Vml = 1380x250 + 0.9x 126x410 V3 x1.1 1.25
no m.	$7db_2 = \frac{0.9 \text{ Pm fu}}{\text{V3 Pm t}} + \frac{\text{Atg fy}}{\text{2mo}}$
	= 19.3. 29. 100)
*67	Design smile strength of congle = 1847730W.
16/201	Deturnine the design tensile strength a roof truss member 2250 90x60x6 mm connected to the gusset plate of 8mm three the connection of plate and angle by 4mm shown in fig. The effective length of the way
	acomm. 258 aoxfortene

Soln Step 1: Design strength due to yielding form code Pg: 32 class 6.2. Idas Tda = Agfy from Steel table Yield strong the 8 the permon = 2x196. 59 = 393-1810 Step 2: Strong in due to w = 60 mm

The point of
$$\left(\frac{60}{6}\right)\left(\frac{350}{100}\right)\left(\frac{60}{200}\right)$$

B = 1.26 $\leq \frac{4u^2mo}{4y^2ma} \geq 0.4$.

The congression of the point of the p

Tield strength of the member = 2 x 531.77 = 1063.54 KV Stelien Design yield sebten the of the greenbox = 293.2 W//. of Tension Hembers Find the olegicold goods area to cavery the factored load considering the strength in yielding. 19 = Tolg Vine (From code Bg-32) 2. Select suitable shape of the n depending upon the type of

mole than of Calculated 3. Determine the no. of Irolto / length of welding required & arrange 4. Find the strength considering i. Strength ain iguelding of cross area. ii. Stolength in depture of critical section iii. Storength in block shear. 5. If the min. die & filth destano ave maintaired. 1. Design a vigle angle section for a tension member of a reoof towns to Casvey a factored terreile force of 25 km. The member is subjected to the possible seversle of stress due to the action of wind. The length of the momber is 2m. Ose 20mm shop bet of grade 4-6 fet the connection

= 290 mm² Step 2: - Select sintable Shape
Tory ISX coox 75×8 mm
Forom steel table by = 1336 mm² Secume thickness of be esset plate = comm Step 3: No. of bots calculation

No. of botts Strength of bott

a. Strength of bott in Shear;

Strength of bott in Shear, Vast Timb d= 20mm, do= 22 mm., Vmt = 1-25, fub = 400 MBa, fu = 410 MBa Nominal Shear stress, Vnet = fub (modernot)

Nominal Shear stress, Vnet = fub (modernot) mm=1, ms=0 (- single shear) . 400 /1 xodex 1 x20

Vmu = 56.59 M 8 Vall = 56.59 KN = 45-27 KN b. Strength of bolt in bearing: Strangth of bolt in bearing,

Varb

Vmrb

Vmrb Nominal strength in bearing Vnpb = 2.5 Kb d t gu Pitch distance.
Folom cale 99-15, class 10.2.2 P42.5 d = 2.5 x20 = 50 mm 2-60 mm ii. Edge distana: From code Pg-74, class 10.2.4.2 2 × 1.5 do = 1.5 x22 = 33 mm = 40 mm to is the least of the following (2d = 40 = 0.606 2d = 2x22 60 0.25 = 0-659

Design a double angle tension member connected on each side of a romm thick gusset plate le corry an anial factored load 8 345 km Use 20mm black holes. Assume shop connections. Step 1: Gross area & the section: Soln '. from code pg: 32. (d x4) + of a po 8 x (\$ \$ \$ \$ \$ \$ \$ 1. 1+ Step 2. Solell snifible shape. from steel table Ag = 988mm Gross area & the section - 1876mm Step 3: No. 8 bold Calculation d = 20mm, do = 22mm, fus-400 Mpa, fax=410 Mpa a) strength of bott in shear. LASTA - Fub CAMA

Tabe = 0.9 Avn for + Atg ty) Avg - (30+(4x60)) x 8 = 2/60 mm x 2 = 4320mm3 Aby = 45x8 = 360mm x 2 = 720mm2 Non - (30+(4x60) - (4.6x22)] x8 Atn = [45 - (0.5x22)]x8 = 272mm2 Tab, = 4320 + 0 + 272×410 7db2 09x1368x410 + 100 x250 Hence the design is safe. Tension, Hember Splice: If the tension members are unequal thickness of the packing plates on some used to surface of the tension 1 24-2-2015 member splice.

Design a splice to connect a 300 mm x 20 mm plate with a 300 mm x 10 mm plate. The design load is 500 rew. Use domm black holes, fabricated in the shop. Soin ! let double cover but Both in shear? 12 0-1 (m i) strongth Volsh: Bpk x fub (nn Anb + ns Ash) 0.875 × 400 (1 × 0.78 × 7/4 × (20) 2 + 1 × 7/4 × 20) 90. 39 km . Alled &

ii) strong to 8 both in bearing: extraorm: potentian. i) Edger distance: e $4 \cdot 1.5 d_0 = 1.5 \times 22 = 33 \sim 40 \text{ mm}$. e $4 \cdot 1.5 d_0 = 1.5 \times 22 = 33 \sim 40 \text{ mm}$. le $4 \cdot 2.5 d = 2.5 \times 20 = 50 \text{ mm} = 60 \text{ mm}$. le is least les is least ii) $\frac{e}{3d_0} = \frac{40}{3\times 22} = 0.666$. iii) $\frac{e}{3d_0} = \frac{40}{3\times 22} = 0.669$ iiii) $\frac{e}{3d_0} = \frac{6}{3\times 22} = 0.669$ iiii) $\frac{e}{3d_0} = \frac{6}{3\times 22} = 0.669$
i) taget distance: e f 1. f do = 1. f x 22 = 33 \sim 40 mm. e f 1. f do = 1. f x 20 = f o mme 60 mm. p f 2. f d = 2. f x 20 = f o mme 60 mm. leto is least ii) $\frac{2}{3do} = \frac{40}{3x^{22}} = 0.666$. iii) $\frac{P}{3do} = 0.26 = \frac{60}{3x^{22}} = 0.669$ iii) $\frac{P}{3do} = 0.26 = \frac{60}{3x^{22}} = 0.669$
e \downarrow 1.5 do = 1.5 x 22 = 33 = 40
ii) pitch distance: $ \begin{array}{cccccccccccccccccccccccccccccccccc$
less is least i) $\frac{e}{3do} = \frac{40}{3x^{2}} = 0.666$. ii) $\frac{P}{3do} = 0.669$ iii) $\frac{P}{3do} = 0.669$ for $\frac{1}{3}$
$\frac{e_{0}}{3d_{0}} = \frac{40}{3x^{2}} = 0.666.$ $\frac{e}{3d_{0}} = \frac{40}{3x^{2}} = 0.669$ $\frac{e}{3d_{0}} = 0.45 = \frac{60}{3x^{2}} = 0.669$ $\frac{e_{0}}{3d_{0}} = 0.669$
ii) $\frac{e}{3d_0} = \frac{40}{3\times 22} = 0.666$. iii) $\frac{P}{3d_0} = 0.45 = \frac{60}{3\times 22} = 0.659$ iii) $\frac{4ub}{4ub} = \frac{400}{410} = 0.9765$.
iii) $\frac{P}{3d_0} = 0.085 = \frac{60}{3}$ $\frac{1}{3}$
fu = 410
fu = 410
Tally and the same of the same
(Y) 1.0 2 (.0 2020 MC - 1900
(i)) shorts of the parisher (i))
Supp = 2. 5 Rb at the
(define and 2.5 x 0.606 x 20 x 10 x 400
and sky lon'
.: Strongth & the bolt = 90.39 leng. .: Strongth & 500 = 5.53 ~ 6 botts.
Strongth & Manufacture of the distance
.: No & bolts 2 90.39 5.53 2 6 botts.

Tabe = (0.9 Avnfu + Dig fy V3 Pml + Vmo)
Avg = 3 (40+60) × 10) = 3000 mm ² . Atg = 220 × 10 - 2200 mm ² .
$Atg = 220 \times 10^{-2} 220 \times 10^{-2} 2000 m^{2}$ $Avn = 3 [(40+60) - (1.6 \times 2)] \times 10^{-2} 1460 m^{2}$ $Atn = [220 - 2 \times 2] \times 10^{-2} 1460 m^{2}$ $7db_{1} = \frac{3000 \times 260}{\sqrt{3} \times 10^{-2}} 0.9 \times 160 \times 410^{-2}$ 1.26
= 413.1 1/N > 500 KN.
Table: 7x2010x410 + 2200 x250
Home the design is sade.
An additional angle is used along with a tension members for the length required to make the

Savina a) without using lug angle: cross Area of the section Ag: Tdg 7mo Step-3: No. 8 bolt connection: Assume, d= 20mm, do=22mm fub=400 N/mm , fu=410 N/mm i) Strength of both in shear! Vaso : Vnsb Vnsb = fub (nn Anb + AsAsb)

Vnsb = fub (nn Anb + AsAsb)

Single shear)

Nn=1, ns=0 (due to doubte shear) 400 /1x0-48×7/x002+ +x 7/x100)

b) strength & both in bearing. $Vdpb = \frac{Vnpb}{Vmb}$ Vnpb = 0.5 kb dt fupitch distance: priter outtaine:

p (a. F. d = 2. F20 = F0260mm.

Edge distance:

e 4 1. Fdo = 1 Fx212 = 33 mm ~ 40mm.

leb is legat through through Monorth (1) e = 40 = 0.606 $\frac{11)}{300} = \frac{0.25}{3x22} = \frac{60}{3x22} = 0.25 = 0.659$ 1v) 1.0 = 1.0 1: 1cb = 0.606 . 1 evitas 0 Unpb = 8.5 x 0.606 x 20 x 10 x 410 = 12H.23kW Vdpb = 124.23

Anc = ((100-10/2)-22) x10 = 730mm2 Ago = (100 - 102) ×10 = 950mm2 from code pg-33.

B = 1-4-0.076 x W/x x fg x bs W=100 mm 2x dollx doll ART Lb ware from steel table.
Wi = Cxx = 28.4 mm bs= w+wi-t=100+28.4-10=118.4mm. Le =9x60 = 540mm 2010 05 (4) B=1.4-0.076 x 100 x 25 x 118.4 540 B=1.09 = \$ 20.7 7dn: 495.02 kn > 430 kn abolalis b) Using lug angle:

Gross Area of connected lug - out standing leg · : load is shared equally : load in out standing leg = load in connected leg (from code pg: 83) Man 10.12.2)2 = 215KN The lug angle connected to ?: 1.4x215=258/cm

Gross area Required 2 50 a 50 : provide ISA 100 × 100 × 6 mm. THE T CONTRACT - E T 100+ 25 H - 10 = 118 H MAN Bott value. i) In shear = 45.24 lcn. shearing = 2.7 x0.606 x 20 x 6 x 410 Code pg: 83 to 84 class 10.12.2 lug angle Connected to the main angle = 215+ (40 ×215) ullaupe Jacople - 3016Not in connected No-08 bolts required to 2 30, and connect lug angle with = 45.27 Unista = Blaxan

phenomenon which is due to shear Stress and shear deformation is Ichown as shear dag. It move the Shear lag: unloaded Edge Variation 8 1-Street (as) defer loaded Edge * Consider a rectanglar flat subjected tension at the edg of the flat as shown stress distribution and fig. e flat near the ends, who normal ment the the forces are applied a non-uniform, with more normal stress along the loaded edge is the less normal stress atong the unloaded edge * The distribution of normal stress and deformation & the floot becomes uniform at the sections away from the ends that in the middle 8 the flat. The design 8 steel section such as as they are MORE angles, channels and Tees to a guest through one leg connected ten used as tension or come

The connecting elements of the section are more stressed than the unconnected elements of the section near the loaded ends.

* for Eg; in the case of Single angle the connected leg see more stressed then the outstanding leg near the localed ends. 1. Determine the Min. net area of C/K The holes 300x12 mm flat as shown in fig. dia is 17.5 mm. Pitch (n) = 40mm 08/18 gauge (9) = 60mm. hote's diameter = 17.5 mm. Dia B bolt = 15.5 mm. i) Net area of the section at O.D (300 - 1x19.5-0) x12

effective area at section 0-0-8 south summer the tring net area & C/6 -8 Determine the ultimate load coarying capacity & the section 278A 75×45×10mm connected to back to back same side & the gusset. Assume Man bolt & property class 4.6. The yield & ultimate Strength & etel 250 SA10 Mga respectively.

Soln: Dia of the bolt hole smolds doing a do r. 24+2 = 26 mm. over of the section Gross = 2x1402 = 2804 mm2. (from steel table) of the mounts i) Design strongers due to yielding Ha = Agfy & shear: Vasb Day & Mpnortz nn=1 / ns=0 = 400 (1x0.78x7/4/2H)2+1x7/2H)2 = 8649 KN.

Jan = 332. 41 x & ii) strongth due to block shear Tabi = (Avg fy + 0.9 xAtnifu) Tdb2 = 0.9 Avn fu t Atg fy \\
V8 8mL \quad \text{8mo} Atg = $(40+(4x6.)) \times 10 \times 2800 \text{ mm}^2$ Atg = $\frac{53.8}{35} \times 10$ $\frac{3500 \text{ mm}^2}{58800} = 58800 \text{ mm}^2$ Avn = $[40+(4x60) - (4.5 \times 26)] \times 10$ Jabi = 2800 x 250 + 0.9 x 398 x 4 10 = 484.89 KN 100 x 0 9db1 = 484.89x 2 = 969.78 km > 637-27