UNITE Stiffnus matrix methodi Stiffness method 100) diplacement method (02) equilibrium metrod Translation (A) 2 are unknowns. rotation (0) Robation - Angular displacement. Translation - Linear displacement. Eaulybrium eachation! $K\Delta = P - P_L$ This mutnod is well based on stope deflection method. Evanisibrium equation P = PL + KA P = Final moment. PL= fixed end moment. [kI con pegne of truedom] Ky = Stillnus co-effruent Krj = striffnuse influence. weffrient. IIIYEAR/VI SEM/SAII/UNIT II/WN/Page 1 Ms.S.NAGAJOTHI AP/CIVIL

O Force developed i due to unit diplacement @ moment developed i due to unit rotation at i Final moment = tixed end moment + KA K-1 (09) begne of freedom. 3 /2 A 831 gn the w- ordinates fully restrained Structure [support (A), moment (A)]. Kinimatric indeterminancy (on) pegnie of tree-domi-The number of independent Joint displacement [both rotation 6 translation] In a structure is known as pegner of freedom 101) kinematre indeterminancy.

S	Hittness influence co-eftruent (kg)
	It is defined as the tonce
d	ureloped at 1th degree of freedom due to
ur	nit diplanment imprussed at i degree
o d	freedom, all other degrees of freedom
0	x cept "j" being kept annuted
2bm	Analyse the continuous beam by displacement
m	itned (boken/m. 100 km
	A. J. 5m + 1.5m.
	See the second s
9	Stup! Deturmination of XI Ion) DOF
C	XI = 2 [OB BOC]
S1	pep:2 A 8819ning 10 -ondinate dinection
	1 08 2 00
3	tup!? Determination of [PL]
■ Ms.S.NAGAJOT	THI AP/CIVIL IIIYEAR/VI SEM/SAII/UNIT II/WN/Page 3

case (a) apply unit notation at B.

$$K_{11} = \frac{2E1}{\lambda_{BB}} \left[2\theta_{B} + \theta_{B} \right] + \frac{2E1}{\lambda_{BC}} \left[2\theta_{B} + \theta_{C} \right]$$

$$= \frac{2E1}{\lambda_{BC}} \left[2 \right] + \frac{2E1}{3} \left[2 \right]$$

$$K_{11} = \frac{2\cdot33E1}{3}$$

$$K_{21} = \frac{2E1}{3} \left[2\theta_{C} + \theta_{C} \right]$$

$$Case (b) \quad apply unit notation at C
$$\frac{\theta_{0B} = 0}{\lambda_{BC}} \quad \frac{\theta_{0C} = 0}{\lambda_{C}}$$

$$K_{12} = \frac{2E1}{\lambda_{BC}} \left[\frac{2\theta_{B} + \theta_{C}}{\lambda_{C}} \right]$$

$$K_{12} = \frac{2E1}{\lambda_{BC}} \left[\frac{2\theta_{B} + \theta_{C}}{\lambda_{C}} \right]$$

$$K_{12} = \frac{2E1}{\lambda_{BC}} \left[\frac{2\theta_{B} + \theta_{C}}{\lambda_{C}} \right]$$

$$K_{12} = \frac{2E1}{\lambda_{BC}} \left[\frac{2\theta_{B} + \theta_{C}}{\lambda_{C}} \right]$$$$

$$k_{22} = \frac{2EI}{R_{CB}} \left[28c + 88 \right]$$

$$= \frac{2EI}{3} \left[2 \right]$$

$$K_{22} = 1.33 E2$$

$$Shup:5 Solving Resultablish an Reduction
$$P - P_1 = K \Delta.$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 42.5 \\ 37.5 \end{bmatrix} = EI \begin{bmatrix} 2.33 & 0.69 \\ 0.67 & 1.33 \end{bmatrix} \begin{bmatrix} 38 \\ 8. \end{bmatrix}$$

$$08 = -11.84 | EI$$

$$0c = -22.32 | EI$$

$$MRB = M_{FAR} + \frac{2EI}{4} \left[20R + 9B \right]$$

$$MRB = -85.92 \text{ kN.m.}$$

$$MBR = -85.92 \text{ kN.m.}$$

$$MBR = -68.16 \text{ kn.m.}$$

$$MBR = -68.16 \text{ kn.m.}$$

$$MBR = -68.16 \text{ kn.m.}$$$$

$$St2P14 \quad St4IInles \quad matrix \quad [k]$$

$$[k] = \begin{bmatrix} k_{11} & K_{12} \\ k_{21} & K_{22} \end{bmatrix}$$

$$Cose \quad (a) \quad apply \quad unit \quad rotation \quad at \quad R$$

$$Qn^{-0} \quad Qn^{-1} \quad g_{-1} \quad g_{-2} \quad g_{-2} \quad g_{-3} \quad g_{-4} \quad g_{-$$

MFRB =
$$-wl^2 = -2016^2 = -60 \text{ km}.$$
 $HFBA = +wl^2 = \frac{420 \times 62}{12} = +60 \text{ km}.$
 $MFRE = -wl = -20 \times 4 = -10 \text{ km}.$
 $HFBA = +wl = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}.$
 $R = +20 \times 4 = +10 \text{ km}$

$$k_{19} = k_{23} = 0.44 \text{ EI}$$

$$k_{33} = \frac{2EI}{4.5} \begin{bmatrix} 2 \\ 4.5 \end{bmatrix}$$

$$\begin{bmatrix} k_{33} = 0.89 \text{ EI} \\ 0.33 & 2.22 & 0.44 \\ 0 & 0.44 & 0.89 \end{bmatrix}$$

$$\underbrace{\begin{array}{c} 95.49 : 5 \\ 0.37 & 2.42 & 0.44 \\ 0 & 0.44 & 0.89 \end{array}} = \underbrace{\begin{array}{c} 0 \\ 0.5 \\ 0.57 & 2.42 & 0.44 \\ 0 & 0.44 & 0.89 \end{bmatrix}} = \underbrace{\begin{array}{c} 0 \\ 0.57 \\ 0.57 & 2.42 & 0.44 \\ 0 & 0.44 & 0.89 \end{bmatrix}} = \underbrace{\begin{array}{c} 0 \\ 0.57 \\ 0.57 & 2.42 \\ 0.57 & 0.57 \\ 0.57$$

$$K_{12} = \frac{2EI}{2BC} \left[20E + 0C \right]$$

$$\frac{-2EI}{4} \left[1 \right] = \left(\frac{KD}{2} = 0.5EI \right) B_{C}.$$

$$K_{22} = \frac{2EI}{2CB} \left[20C + 0B \right]$$

$$K_{22} = \frac{2EI}{4} \left[20C + 0B \right]$$

$$K_{23} = \frac{2EI}{4} \left[20C + 0B \right]$$

$$K_{24}$$

$$k_{11} = \frac{3EI}{l_{BD}} \left[20_{B} + 8_{D} \right] + \frac{3EI}{l_{BD}} \left[20_{B} + 8_{C} \right]$$

$$= \frac{3EI}{l_{2}} \left[\frac{3}{l_{3}} \right] + \frac{3EI}{l_{8}} \left[\frac{2}{l_{8}} \times 1 \right]$$

$$k_{11} = 0.388 EI$$

$$k_{21} = \frac{3EI}{l_{8}} \left[\frac{1}{l_{1}} \right]$$

$$k_{21} = 0.11EI$$

$$(a_{11} l_{1}) \text{ apply unit notation at } \mathbb{R}$$

$$k_{21} = 0.11EI$$

$$k_{22} = \frac{3EI}{l_{8}} \left[\frac{3}{l_{8}} + \frac{3}{l_{8}} \right] \frac{3EI}{l_{ER}} \left[\frac{3}{l_{8}} + \frac{3}{l_{8}} \right]$$

$$k_{22} = \frac{3EI}{l_{8}} \left[\frac{2}{l_{8}} + \frac{3}{l_{8}} \right] \frac{3EI}{l_{ER}} \left[\frac{3}{l_{8}} + \frac{3}{l_{8}} \right]$$

$$k_{22} = \frac{3EI}{l_{8}} \left[\frac{2}{l_{8}} \right]$$

$$k_{23} = 0.22EI$$

Analyse the frame
$$\frac{4m}{120km}$$
 $\frac{4m}{120km}$ \frac

PIL =
$$N_{FBB} = 0$$
 $P_{2L} = N_{FBB} + N_{FBC} + N_{FBD}$
 $= 0 + 0 + + 85 - 32$
 $P_{21} = 85 - 32 \times N \cdot m$
 $\begin{bmatrix} P_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 85 - 23 \end{bmatrix}$

Shipsq Stiffness matrix (k)

Cons (a) apply with notation at B

 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$

If worth notation at
$$[0c=1]$$
 k_{B}
 k_{B}

#Inal moment;

HAB =
$$HF_{AB} + \frac{2FI}{2} \left[20B + 8B - 34/2 \right]$$
 $HBB = 0 \text{ lev.m.}$
 $HBA = 0 + \frac{2EI}{4} \left[20B - 34/2 \right]$
 $HBB = 13.33 \text{ kn.m.}$
 $MBC = -13.33 \text{ kn.m.}$
 $MCB = 15.33 \text{ kn.m.}$
 $MCD = -15.33 \text{ kn.m.}$

Step:
$$I$$
 [PL].

PIL = 0 [NO Homizontal Jonie].

P2L = MFBH I MFBC.

P2L = MFBH I MFBC.

P2L = MFCB I MFCD = I HCO KNM.

[PL] = I =

$$k_{33} = M_{CB} + M_{CD}.$$

$$= \frac{4E1}{g} \left[20c + 8B^{2} + \frac{1}{4}EI \left[28c + 8B^{2} \right] \right]$$

$$k_{33} = 2EI$$

$$\begin{bmatrix} k7 = \begin{bmatrix} 0.234 & -0.345 & -0.1845. \\ -0.345 & 2 & 0.5 \end{bmatrix} \\ -0.1876. & 0.5. \end{bmatrix}$$

$$\begin{bmatrix} c & 234 & -0.345 & -0.1875 \\ -0.345 & 2 & 0.5 \end{bmatrix}$$

$$\begin{bmatrix} c & 234 & -0.345 & -0.1875 \\ -0.345 & 2 & 0.5 \end{bmatrix}$$

$$\begin{bmatrix} c & 234 & -0.345 & -0.1875 \\ -0.1876. & 0.6. \end{bmatrix}$$

$$A_{1} = 125.78 | EI$$

$$0 = 128.68 | EI$$

$$0 = 128.68 | EI$$

$$0 = -100.38 | EI$$

$$H_{BB} = H_{FBB} + \frac{2EI}{4} \left[286 + 9B - 34 \right] \left[4 + 48 + 34 \right]$$

$$H_{BB} = 14.14 | kmm$$

$$M_{BB} = M_{FBB} + \frac{2EI}{4} \left[206 + 9B - 34 \right] \left[4 + 48 + 34 \right]$$

$$M_{BB} = 8.151 | kmm$$

MBC =
$$-160+\frac{1}{8pt}$$
 [2 x 128 · 68 - 100 · 38]

MBC = -91.61 km/m

MCB = $+123.96$ km/m.

MDC = -123.96 km/m.

MDC = -73.77 km/m.