MOVING LOADS & INFLUENCE DIAGRAM Introduction :-In this addition you are coasting in a design office analysis and designing bridge grides for Tolling wheel lead will be alone. In an in fluence line diagram the ordinates show the BM, shear, Meantien etc. at Chosen point in the Structure say P and the abscissa (x.o-ordinate). Influence Line : ? An inthence line is a graph Showing for any given beam, frame on trus, the Variation of any force con displacement quantity (such as shear face, bending moment, tension & Deflection). | Let us try to get the IL for RA for the Gran | 7 | |--|-----| | AB in tig. Let a unit load act at P, distan | we_ | | a From A. Then | | | $RP = \left(\frac{d-q}{R}\right)$ | | | When we plot equation, that is the | | | in tulonee line for RA | | | When Will extend this Measoning to | | | RB and coad of RB = a | | | Examples | ٠ | | Dolaw the son influence line diagram for | | | the Meacrians RAGERS for 2m, 4m, 6m. | | | 1 KM | | | A T 1 1 1 | C | | 10 m | | | Solution | | | ZMA = 0 | | | (RB×10) = JL | | | RB = 3 | 14 | | | | | Let us try to get the IL for RA For the Learn | |--| | AB in tig. Let a unit load act at P, distance | | AB In The | | a From A. other | | $RA = \left(\frac{d-g}{\ell}\right)$ | | When we plot equation, that is the | | interested for RA | | When Will Extend This Cleaser of | | RB and cond of la = a | | and the state of t | | in Influence line diagram to | | the Meactions RAGERS for 2m, 4m, 6m. | | 1 KY | | A 8 | | 10 m | | Tolution | | ZMA = 0 | | (RB×10) = X | | RB = 3 | | | | Zv = 0 | | |--------------------------------------|-------------------------------| | RB-1 RC = 1 | | | R8 = L-L-b+x | | | | | | RB = 3-b | | | Span AB | | | @ x=0, Rc = -a | | | RB = LAQ | | | @ a = a , RC = 0 | J-9 - 1 . | | R8 = 1 | | | Span Be | | | @ x=0, kc=0 | and the state of the state of | | RB+1 | | | @ x _ c , Rc-1 | | | RB=0 | · • | | Span co | | | x=0, RC= C+b | | | $RB = -\frac{b}{C}$ | | | DDEDADED DV V VALAIDANDIAN AD /CIVII | HNIT II /UCEM /Dogo O | | | 6 | |------|--| | | (L-2) (2-2) = c2-2-d2+2 | | - | 4-2 | | | ya = yc (L-2-)ol+x) | | | 2 / 1 2 2 | | | (L-2) - (d-x) = 1-2 | | | entrary a partition of the same sam | | | | | | y1 - yc (2-x) | | 16.5 | Z-X Z [m-13, m-13] | | | <u>9</u> = <u>3</u> - | | | The stands | | 2 | y1= y2 | | | 41+42 = 4c+42 | | | | | | w (91+9c) - w (9c+9e) =0 | | | - dd | | | Olme =0 | | 4 | mc = wx-1 (y1+yc) x + cvx-1 x (gc+yb) | | | thatimem Bending moment | | | to I man mornent | 192 - 1. ET. $$\frac{\partial^2 y}{\partial x^2} = \frac{x + a(x-5)}{2}$$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ BES At point C $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ At point C $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right] + \frac{a(x-5)^2}{2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{1}{2} - \frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial^2 y}{\partial x^2} = \frac{1}{2} \left[\frac{x^2}{3} + c_1 x + c_2 \right]$ $\frac{\partial y}{\partial x} = \frac{1}{2} \left[\frac{x^$ | problem
Determine the influence line | to g at | |--|--| | Du Das mid for | Compute | | Continuous from Shown in 13 | every 1.5m | | interval. | | | Am bm bob bm for | | | A PU TO TO TO THE REAL OF THE PERSON TO THE REAL OF THE PERSON TO PE | | | consider DC | | | HP(*) | | | 111.10 | Eller de la constante co | | EV=0
RC= IMN | | | mD = (1x2) | | | MD: 3 EN M | | | | | Consider $$A \in D$$ $$\begin{cases} A & \int_{0}^{\infty} |A| \\ A & \int_{0}^{\infty} |A| \\ A & \int_{0}^{\infty} |A| \\ CREAD & + MD + (May) = 0 \end{cases}$$ $$\begin{cases} CREAD & + MD + (May) = 0 \end{cases}$$ $$\begin{cases} CREAD & + MD + (May) = 0 \end{cases}$$ $$\begin{cases} RA = -12 \\ RA = -142 \end{cases}$$ $$\begin{cases} A = -2 + (A + C) C$$