UNIT - 3 8015290573
Numerical Differentiation and Integration
Numerical differentiation: It is the Process of finding the Values of $\frac{dy}{dx}$, $\frac{dy}{dx^2}$ and $\frac{dy}{dx^3}$, for some particular value of x . find the first derivatives of $f(x)$ at $x=2$ for the data $f(-1)=-21$, $f(1)=15$, $f(2)=12$. $f(3)=3$ using Newton's divided difference formula. Solution of the Newton's divided difference assumed is $f(x)=\frac{1}{2}$ and $f(x)=\frac{1}{2}$

	a	y	44	1 ² y	A34
	-1 -38	-21	10	The In	Taken to 1
	1	15	18	-7	bantoV:
	2	12	-3	-3	Sensi
9 = 12	3	3	-9	ma guist	bot 10
		110~ 1	10 - 7(x	-/)	
	= -	$21 + 18x +$ $21 + 18x$ $3 - 9x^2 + 17$ $2 - 18x + 1$ $3 - 7$	+ 18-7x	+ 7 + x	- 2x

2	F(x)	4 8(x)	4 9m)	0	AFIN
3 5 11 27 34	-13 23 899 17315 35606	18 146 1026 2613	16 40 69		0
= P(: p'c	=-13 $-13 + 18 \times + 1$	$-54 + 16x$ $3 - 11x^{2} - 8x$ $3x^{2} - 7x + 1$ $-6x - 7$	$\frac{1+16 \left(x^{2} \right)}{-\left(x^{2} 8 x + 18 \right)}$ $\frac{2}{-128 x + 1}$ $\frac{2}{-88 x} + 1$ $\frac{8}{-128 x + 1}$	8x+15] 5)(x+11) -240 5x-165	

Newlows gorward formula for derivatives

$$y = f(x) = y_0 + \frac{u}{1!} \xrightarrow{\Delta y_0} + \frac{u(u-1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{u(u-1)(u-2)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{u(u-1)(u-2)(u-2)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{u(u-1)(u-2)(u-2)}{3!} \xrightarrow{\Delta^2 y_0} + \cdots$$
 $y' = \frac{1}{R} \left[\Delta y_0 + \frac{(2u-1)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(3u^2 - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} + \cdots \right]$
 $y'' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(6u - 6)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(12u^2 - 36u + 23)}{4!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 36)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(12u^2 - 36u + 23)}{4!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 36)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(2u^2 - 36u + 23)}{4!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 36)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(2u^2 - 36u + 23)}{4!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 36)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 36)}{4!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 36)}{3!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 36u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$
 $y''' = \frac{1}{R^2} \left[\Delta^2 y_0 + \frac{(2u - 1)}{2!} \xrightarrow{\Delta^2 y_0} + \frac{(2u - 6u + 2)}{3!} \xrightarrow{\Delta^2 y_0} \right]$

		$\Delta^{2}y_{0} + (6u - 6u $) Syt
F"':	$(x) = \frac{1}{R^3} \int \Delta$	3 + (244-	36) styo+	J	
	= x-x0 =	$\frac{\chi - 1.5}{0.5}$ $\int u = 0$	1		
when		Dy Z		sty	15 y
		3.625	3) 6.15		1 -
2.5	13.625	6.625	0·75 3·75	6	0
3	24	14-815	4.5	0	-
3.5	38.875	20.125	5.25-	1	
4	59			4	
				white	

$$F'(1.5) = \frac{1}{0.5} \left[3.625 + (0-1) \cdot \frac{3}{2} + \frac{2}{6} (0.75) \right]$$

$$= \frac{1}{0.5} \left[3.625 - 1.5 + 0.25 \right]$$

$$= 4.75$$

$$F''(1.5) = \frac{1}{0.52} \left[3 + (-6) \times \frac{0.75}{6} \right]$$

$$= \frac{1}{0.52} \left[3 - 0.75 \right] = 9$$

$$= \frac{1}{0.52} \left[3 - 0.75 \right] = 6$$
Newton's Backward Interpolation formula
$$y' = \frac{1}{F} \left[\nabla y_n + \frac{(3v+1)}{2!} \nabla^2 y_n + \frac{(3v+6v+2)}{3!} \nabla^2 y_n + \frac{(4v^3+18v^2+22v^2+6)}{4!} \nabla^4 y_n + \dots \right]$$

$$y'' = \frac{1}{F^2} \left[\nabla^2 y_n + \frac{(3h^2+3b)}{4!} \nabla^2 y_n + \frac{(12v^2+3b^2+22)}{4!} \nabla^2 y_n + \dots \right]$$

$$y''' = \frac{1}{F^2} \left[\nabla^2 y_n + \frac{(3h^2+3b)}{4!} \nabla^2 y_n + \frac{(12v^2+3b^2+22)}{4!} \nabla^2 y_n + \dots \right]$$

$$y''' = \frac{1}{F^3} \left[\nabla^3 y_n + \frac{(3h^2+3b)}{4!} \nabla^3 y_n + \frac{(12v^2+3b^2+22)}{4!} \nabla^3 y_n + \dots \right]$$

$$y''' = \frac{1}{F^3} \left[\nabla^3 y_n + \frac{(3h^2+3b)}{4!} \nabla^3 y_n + \frac{(3h^2+3b)}{4!} \nabla^3 y_n + \dots \right]$$

$$V = \frac{x - x_n}{F} = \frac{x - h}{0.55}$$
When $x = h = 0$ $y = 0$

	$\beta''(x) = \frac{1}{\beta^2} \left[\Delta \hat{y}_0 + \left(\frac{6u - 6}{3!} \right) \Delta^3 \hat{y}_0 + \left(\frac{12u^2 - 36u + 22}{4!} \right) \Delta^4 \hat{y}_0 + \cdots \right]$
	$F''(y) = \frac{1}{8} \int \Delta^3 y_0 + (244 - 36) \Delta^4 y_0 + \cdots$
	$u = \frac{\chi - \chi_0}{R} = \frac{\chi - 1.5}{0.5}$
	When $x=1.5$ $u=0$
	x y Δy $\Delta \hat{y}$ $\Delta \hat{y}$ $\Delta \hat{y}$
	1.5 3.375 (3.625)
	6-625
	2.5 13.625 3.75
44	3 24 4.5 0.75
	3.5 38.875 5.25
	4 59
	Lavi Z N man

$y' = \frac{1}{0.5} \left[20.125 + \frac{1}{2} \times 5.25 + \frac{2}{6} \times 0.75 \right]$	7
$y'' = \frac{1}{0.5^{2}} \left[5.25 + 6 \times 0.75 \right] = 24$	
$y''' = \frac{1}{0.5} 3 \left[0.75 \right] = 6$	
To the given data, find the first the	,
desirations at $x = 1.7$ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.989 1.9	031
9010 1 (11 1/24-1) 13/2 + (3/2-6/42) 13/2	3 1
+(Au -184 + au - 2 36)	7
$y'' = \frac{1}{R^2} \left[\Delta_y^2 + \frac{(6u - 6)}{3!} \Delta_y^3 + \frac{(12u^2 - 36u + 32)}{4!} \Delta_y^3 \right]$	490 - J -
$u = \frac{x - x_0}{h} = \frac{x - 1 \cdot 0}{0 \cdot 1}$ At $x = 1 \cdot 1$ $u = \frac{1 \cdot 1 - 1 \cdot 0}{0 \cdot 1} = 1$.	
[(0)000)(0+2)+(018 -)] = 1 +(1111/6	
[(02000) [2] + [at 0350.0-] 001=	

	7						
	y = .	1 / (p.		ŽÝ	By [sty	15
	1.0	4.989	0-4140	38.3	21	in the	
	1.1	8-403	0 3780	-0.0360	0 0060	'B"	
	1.2	8-781	0-3480	-0.03	0.0040	-0.0020	060)
1100	1.3	9-451	0.3220	-00260	0.003	-0 0010	0.003
			0.2990	-0.0230	0.0050	0.002	
	1.5	9.750	0-2810	-0.0180	14=	y	D
E dist		0 /		7+22-6)	(-0.00.	2]	
		3.9480	14-0.0 [(-0.634 +(12- 0.0360 +0	(0) + (6-6)	(0 0060.		

+	f ind the f	girst and	-3.584 two der 2 = 56 for 53 54 3.7563 3.77	ivaluies the	given 56	n 3 data	
9	oln x y	- D	Δ2	∆ ³ \	54	- DS-	16
5 5 5 5	2 3.1325 3.1563 3.7198 3.825		-0.0003 -0.0003 -0.0003	0 0	0 0 0	0	0
1	recutoris y'= 1/R [Jonward Δy0+ (24 2 + (443-	gomula: -1) △3y0 + (1843-184-6.	34-64+) 144, +	2) A	39°	

	A	2c	+0.000	-3.584	, Maj		1 1/3	
3	gi	nd the	givest and	two den n = 56 fer 53 54	the 1	given 51	data ,	f
	× y=>	50 5	1084 3-7325		3-80-30	3.	8259],
	goln x	y	0	D2	D ³	4	5	1,00
	50	3.6840	0.0244		W.	arthug	M	
	51	3-1084	00241	-0.0003	0		12	
	52	3.1325	0.0238	-0.0003	6	0	0	
	53	3.1563	0.0235-	-0.0003	1	0		0
	54	3.7198	0.0232	- 0.0003	0	0	0	
	55	3 8036	0.0229	-0.0003	120			
	56	3.825	7	10) + 00	0			1.
	Ne	utons	gonward	gormula:		2-3	2	
	y	一点「	Ayo+ (24)	18u 7 22u-6	34-64+	A A	³ 90	

$$y'' = \frac{1}{R^{2}} \left[\Delta^{2}y_{0} + (\frac{6u-6}{3!}) \Delta^{3}y_{0} + (\frac{12u^{2}-36u+22}{4!}) \Delta^{4}y_{0} + \cdots \right]$$

$$u = \frac{x-x_{0}}{R} = \frac{50-50}{6} = 0$$

$$y' = \frac{1}{1} \left[0.02414 + \frac{(-1)}{2} \left(-0.0003 \right) \right]$$

$$= 0.0244 + 0.0002$$

$$= 0.0246$$

$$y'' = \frac{1}{1} \left[-0.0003 \right] = -0.0003$$
Neuton's Backward Interpolation formula
$$y' = \frac{1}{1} \left[\nabla y_{0} + \frac{(2v+1)}{2!} \nabla^{2}y_{0} + \frac{(2v^{2}+6v+2)}{3!} \nabla^{3}y_{0} + \frac{(2v^{2}+6v+2)}{3!} \nabla^{4}y_{0} + \cdots \right]$$

$$y'' = \frac{1}{1} \left[\nabla^{2}y_{0} + \frac{(6v+6)}{3!} \nabla^{2}y_{0} + \frac{(12v^{2}+36v+22)}{4!} \nabla^{4}y_{0} \right]$$

$$v = \frac{x-x_{0}}{R} = \frac{x-56}{0.5}$$

$$v' = \frac{56-56}{0.5} = 0$$

$$v' = \frac{1}{0.5} \left[0.0299 + \frac{(0+1)}{2!} \left(-0.0003 \right) + \frac{2}{3!} \left(0 \right) + 0 \right]$$

$$= \frac{1}{0.5} \left[0.0299 + \frac{0.0003}{2} + \frac{0.0003}{2} + \frac{0.0003}{2} + \frac{0.0003}{2} \right]$$

$$v'' = \frac{1}{0.5} \left[-0.0003 \right] = -0.0012$$

```
Numerical Integration
Trapemoidal stule

I = \int_{a}^{b} f(x) dx = \frac{h}{2} \int_{a}^{b} (sum g) first \text{ and } last

ordinate) +2(sum g)

nemaining ordinates)

nemaining ordinates)
        f = \frac{b-a}{b}
  Simpsoins 1/3 rule
       T = \int_{0}^{b} f(x) dx = \int_{0}^{b} \int_{0}^{b} (f_{inst} + Last) + H(Sum g) dd
ordinates) +2 (Sum g) even
ordinates) J
                          R= b-a multiples of 2)
            I = 3h [(first Last) +2 (Sum g multiples 93)]
+3 (Sum g non-multiples 93)]
                   h = \frac{b-a}{b} [multiples 9 3]
     O Using Traperpoidal rule, evaluate July taking 8 intervals.
```

$$\frac{3010}{h} = \frac{b-a}{0} : \frac{1+1}{8} = \frac{2}{8} = 0.25$$

$$x = -1 = -0.75 = -0.5 = -0.25 = 0.25 = 0.5 = 0.75 = 1$$

$$y = 0.5 = 0.65 = 0.8 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.94/2 = 0.95 = 0.25 = 0.5 = 0.5 = 0.94/2 = 0.65 = 0.8 = 0.94/2 = 1$$

$$= 0.25 = \left[(0.5 + 0.5) + 2 (0.65 + 0.8 + 0.94/2 + 1 + 0.94/2 + 0.8 + 0.64) \right]$$

$$= 0.25 = \left[(0.5 + 0.5) + 2 (0.65 + 0.8 + 0.94/2 + 1 + 0.94/2 + 0.8 + 0.64) \right]$$

$$= 0.25 = \left[(12.5 - 24.8) \right]$$

$$= 0.25 = \left[(12.5 - 24.8) \right]$$

$$= 1.5656$$
2) Evaluate
$$\int_{0.14 \times 1}^{1} \frac{1}{1+x^{2}} dx \quad \text{with} \quad h = \frac{1}{6} \quad \text{by}$$
Trapenjoi dal stude.

$$\frac{3010}{2} \quad p(x) = \frac{1}{1+x^{2}} \quad h = \frac{1}{6}$$

$$y = 0.46 = \frac{3}{6} \quad \frac{41}{6} \quad \frac{5}{6} \quad \frac{1}{2}$$

$$y = 0.34/2 \quad 9/6 \quad \frac{3}{6} \quad \frac{41}{6} \quad \frac{5}{6} \quad \frac{1}{2}$$

$$T = \frac{h}{2} \left[(y_0 + y_0) + 2(y_1 + y_2 + y_3 + y_4 + y_5) \right]$$

$$= \frac{(y_0)}{2} \left[(1 + y_2) + 2 \left(\frac{36}{37} + \frac{9}{10} + \frac{4}{5^2} + \frac{9}{13} + \frac{36}{61} \right) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 2(3.9554) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 7.9108 \right]$$

$$= 0.7842$$
(3) Evaluate
$$\int_{0}^{6} \frac{1}{1 + x} dx \quad \text{by Trapenoidal soule}$$
Also cheek up the gresults by actual Tritegration
$$\begin{cases} \text{fon} \\ 1 + x \end{cases} + \begin{cases} h = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{6} = 61 \end{cases}$$

$$\begin{cases} 1 + x + y = \frac{b-a}{0} = \frac{6-b}{0} = \frac{6-b}{0$$

By actual Integration

$$I = \int_{6}^{6} \frac{1}{1+x^{2}} dx = \int_{1}^{1} \tan^{-1}x \int_{0}^{6} = \tan^{-1}6 - \tan^{-1}6$$

$$I = \int_{1}^{1} \frac{1}{1+x^{2}} dx = \int_{1}^{1} \tan^{-1}x \int_{0}^{6} = \tan^{-1}6 - \tan^{-1}6$$

$$I = \int_{1}^{1} \frac{1}{1+x^{2}} dx = \int_{1}^{1} \tan^{-1}x \int_{1}^{6} \frac{1}{5}$$

Evaluate
$$\int_{1}^{1} \sqrt{x} dx = \int_{1}^{1} \tan^{-1}x \int_{1}^{6} \frac{1}{5}$$

$$\int_{1}^{1} \tan^{-1}x \int_{1}^{1} \sqrt{x} dx = \int_{1}^{1} \tan^{-1}x \int_{1}^{1} \frac{1}{5}$$

$$\int_{1}^{1} \tan^{-1}x \int_{1}^{1} \frac{1}{5} dx = \int_{1}^{1} \frac{1}{5} \int_{1}^{1} \frac{1}{5} dx = \int_{1}^{1} \frac{1}{5} \int_{1}^{1} \frac{1}{5} \int_{1}^{1} \frac{1}{5} dx = \int_{1}^{1} \frac{1}{5} \int_{1$$

$$T = \frac{h}{2} \left[(y_0 + y_0) + 2(y_1 + y_2 + y_3 + y_4 + y_5) \right]$$

$$= \frac{(y_0)}{2} \left[(1 + y_2) + 2 \left(\frac{36}{37} + \frac{9}{10} + \frac{4}{5} + \frac{9}{12} + \frac{36}{41} \right) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 2(3.9554) \right]$$

$$= \frac{1}{12} \left[\frac{3}{2} + 7.9108 \right]$$

$$= 0.7842$$
(3) Evaluate
$$\int \frac{6}{1+x^2} dx \quad \text{by Trapensoidal orde}$$
Also cheek up the grenults by actual and the gradient of the

By actual
$$T_0 + egralism$$

$$T = \int_{0}^{6} \frac{1}{1+x^{2}} dx = \int_{0}^{1} tan^{-1}x \int_{0}^{6} = tan^{-1}6 - tan^{-1}6$$

$$T = \int_{0}^{6} \frac{1}{1+x^{2}} dx = \int_{0}^{1} tan^{-1}x \int_{0}^{6} = tan^{-1}6 - tan^{-1}6$$

$$= 1.40 \times 64765$$

Evaluate $\int_{0}^{1.3} \sqrt{x} dx taking h = 0.05 by$

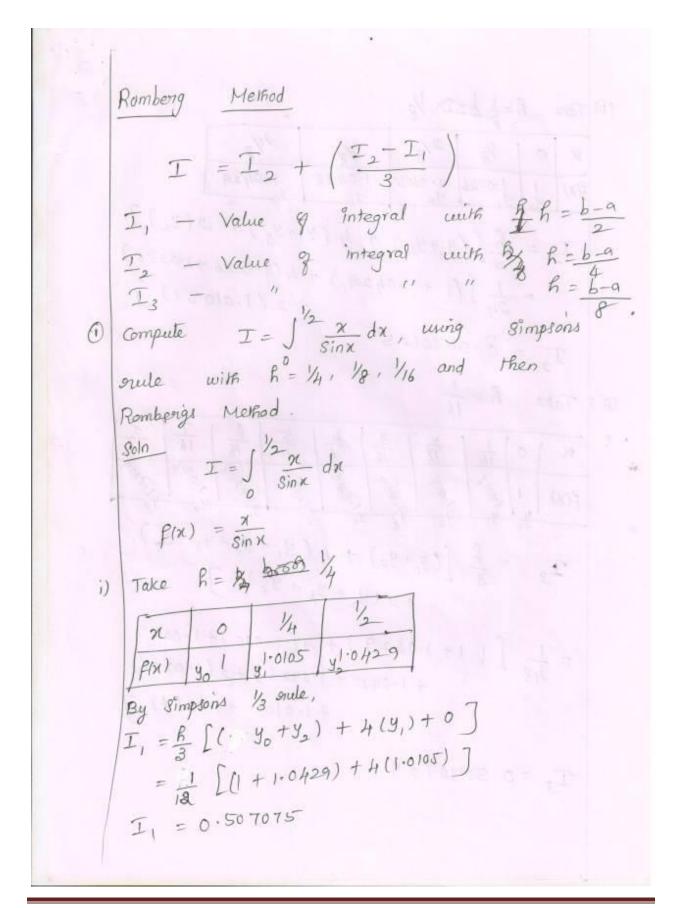
$$traperpointal stude Solve
$$f(x) = \sqrt{x}$$

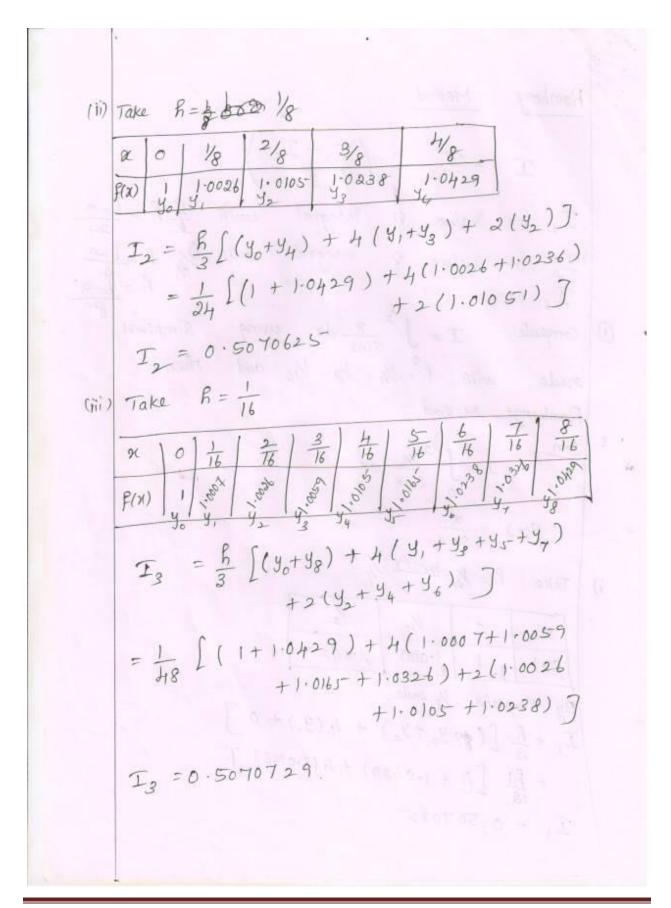
$$h = \frac{b-a}{0} = 0.05$$

$$x = 1.0 \cdot 1.05 \cdot 1.1 \cdot 1.15 \cdot 1.2 \cdot 1.25 \cdot 1.3$$

$$x = 1.0 \cdot 1.05 \cdot 1.1 \cdot 1.15 \cdot 1.2 \cdot 1.25 \cdot 1.3$$

$$y = 1.0247 \cdot 1.0488 \cdot 1.0724 \cdot 1.0954 \cdot 1.180 \cdot 1.1602$$


$$T = \frac{h}{2} \left[(y_{0} + y_{0}) + 2(y_{+} + y_{+} + y_$$$$


. 1	Don't
5	Dividing the range into 10 equal parts find the value of 5 11/2 Sinx dx by
	Simpsons 1/3 grule.
	$f(x) = \sin x$ $f = \frac{b-a}{0} = \frac{\pi}{10} = \frac{\pi}{20}$
	91 0 11/20 211/20 311/20 411/20 51/30 61/30 411/20 81/30 FIXI) 0 0.1564 0.3090 0.4540 0.5818 0.1011 0.8090 0.9910 0.9511
	$I = \frac{h}{3} \left[(y_0 + y_8) + 4 (y_1 + y_3 + y_5 + y_7) \right]$
	+2(4, +4, +4,)]
	$= \frac{11/20}{3} \left[(0+1) + 4 (0.1564 + 0.4540 + 0.7071 + 0.8910) + 2 (0.3090 + 0.5878 + 0.8090) \right]$
	= T/60 × 19.0986 = 1
B	The velocity v of a particle at a distance of from a point on its path is
	gr by the saile
	9 0 10 20 30 40 50 60 S 0 10 64 65 61 52 36 V 47 58 64 65 61 52
	the time taken to travel 60
	Estimate me simpsons 1/3 rule.

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY, VIRUDHUNAGAR	COURSE MATERIAL(NOTES)
NUMERICAL METHODS MA6459	Page 20

Solo Velouty = distance time
$v = \frac{ds}{dt}$
dt 60 v
$t = \int_{V}^{1} ds = h = 10$
$I = \begin{cases} 60 & 0 \\ -1 & ds = \frac{h}{3} \int (y_0 + y_6) \\ +2(y_1 + y_3 + y_5) + 2(y_2 + y_4) \end{bmatrix}$
V 41 5-8 64 65- 61 52 38 V 0.02127 0.01724 0.015 625 6.0138 0.01615 0.01923 0.026311
$T = \frac{10}{3} \int (0.02127 + 0.026316)$ $T = \frac{10}{3} \int (0.02127 + 0.026316)$
$I = \frac{10}{3} \left[(0.02127 + 0.026316) + (0.07124 + 0.01538 + 0.0923) + (0.07124 + 0.01639) \right]$
+2(0.015623
I = 1.06338 $I = 1.06338$
Tompute of sinx dx using Simpson's 3/2 morale of numerical integration.
3/8 m Films of a second
and and an area of the second

are gr	car running on intervals of 2 minutes 4 6 8 10 12
Time (min) 0 2	30 27 18 1
using simpsons 1/3 distance concred by	orule from
$Velouty = \frac{dn}{dt}$	
$dn = v dt$ $n = \int v dt$	(ot+ 4) 32 T
b 0 2 4 v	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 (,) + 2 (42+44) (41+43+46)]
$=\frac{2}{3}\left(0+0+\right)$	$2\left(\frac{36}{60} + \frac{18}{60}\right)$ $\left(\frac{22}{60} + \frac{27}{60} + \frac{7}{60}\right)$

for
$$I_1, I_2$$
Romberg formula is

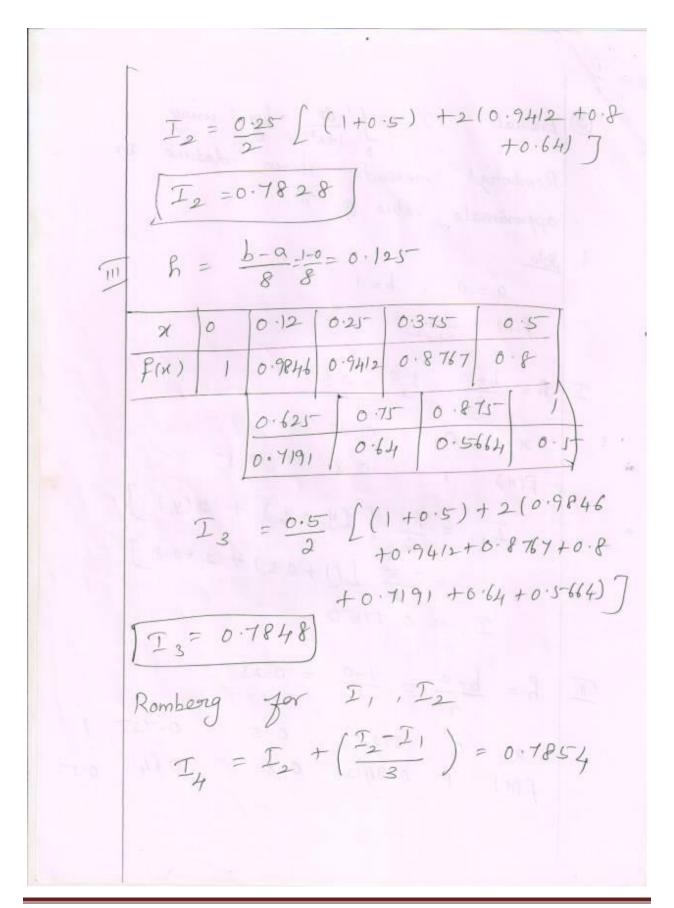
$$I_4 = I_2 + \left(\frac{I_2 - I_1}{3}\right)$$

$$= 0.5070625 + \left(\frac{0.5070625 - 0.507075}{3}\right)$$

$$I = 0.507058$$
for I_3, I_3

$$I_5 = I_3 + \left(\frac{I_3 - I_2}{3}\right)$$


$$= 0.5070729 + \left(\frac{0.5070729 - 0.507062J}{3}\right)$$


$$= 0.5070729 + \left(\frac{0.5070729 - 0.507062J}{3}\right)$$

$$I_5 = I_5 + \left(\frac{I_5 - I_4}{3}\right)$$

	Evaluate $T = \int \frac{dn}{1+x^2}$ by using Rombergs method. Hence deduce an approximate value of T . Solve $q = 0$, $b = 1$
	$f(x) = \frac{1}{1+x^2}$ $h = \frac{b-a}{2} = \frac{1-0}{2} = 0.5$ $x = 0.5$
2.00	p(x) 0.8 0.5 = $p(x)$ $p(y_0 + y_2)$ + $p(y_1)$]
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1/2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

9	Evaluate $I = \int \frac{dx}{1+x^2}$ by using Rombergs method. Hence deduce an
	approximate value 9 " Solve $a = 0$; $b = 1$
	$f(n) = \frac{1}{1+n^2}$
	$R = \frac{b-a}{2} = \frac{1-0}{2} = 0.5$ $\times 0 0.5 - 1$ $0.8 0.5 - 1$
	$= \frac{1}{2} \left[(y_0 + y_2) + 2(y_1) \right]$
	$= 0.5 = 1.0 + 2 \times 0.8 $ $= 0.5 = 0.1750$ $= 0.1750$
	$h = \frac{b-a}{4} = \frac{1-o}{4} = 0.25$
	x 0 0.25 0.5 0.75 1 f(M) 1 0.94/2 0.8 0.64 0.5

Romberg for
$$J_{2}$$
, J_{3}

$$I_{5} = I_{3} + \left(\frac{J_{3} - I_{2}}{3}\right) = 0.7855$$

Romberg for I_{4} , I_{5}

$$I = I_{5} + \left(\frac{I_{5} - I_{4}}{3}\right) = 0.7855 - \frac{1}{3}$$

$$I = \int_{0.7855} \frac{dn}{1 + n}$$

0. $7855 = \int_{0.7855} \tan^{-1}(1) - \tan^{-1}(0)$

$$I_{4} = 0.7855$$

$$I_{7} = 3.1420$$

Using Romberg Integration, evaluate
$$\int_{0}^{1} \frac{dx}{1 + x}$$
Soln

Here $a = 0$, $b = 1$

-2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$T_{2} = \frac{0.25}{2} \left[(1+0.5) + 2(0.8+0.6667 + 0.5714) \right]$ $T_{2} = 0.6970$
1	$h = \frac{b-9}{8} = \frac{1-0}{8} = 6.125$

400	- 1	0.125	8.25	0.375 1	0.5
H			0.8	0.7273	0.6667
F(x))	0.8889	0.0	4	- 110/
		0.625	0.75	0.875	J
		0-6154	0.5714	0.5333	0:5
	0 101	= (,		1 - 2222	-
I3 =	0.12	- (1+0	1.5) +2	(0.8889	40.8
	d	to.7	273 +0	6667+0.6	154
		7	10.5711	1+0.533	3)7
T	= 0	6941.			-
1-3)				1
Rombe	919 7	or I, :	I_2		
I	0	I2 +(2		
1 - 40)	LOUISY	Lawy	. / A-	6970 - 0.7	084)
and a	arla F	0.697	07/0	2	-)
1	0	0.6932	27	3 Hilamide	
	4	0.6932			
*		inio i	The state of		
	ng of	or I_2 i	-3		
Rembe	- 1		1 T T	1. 1	
Rembe	T	+ In	+ 1 -3 -	2	
Rembe	Is	= 53	3	2	

Romberg for
$$I_{4}I^{2}S$$

$$I_{5} = 0.693I$$

Romberg for $I_{4}I^{2}S$

$$I_{6} = I_{5} + \left(\frac{I_{5}-I_{4}}{3}\right)$$

(nams Quadrature formula

Quadrature

The Process of finding a definite

integral from a tabulated values of a

function is known as Quadrature

Graussian true Point Quadrature formula

let $I = \int_{5}^{b} f(x) dx$.

Take $x = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right)t$

$$dx = \left(\frac{b-a}{2}\right) dt$$

By using this transformation

$$I = \int g(t) dt = g(\frac{1}{\sqrt{3}}) + g(\frac{1}{\sqrt{3}})$$

Continuous formula

$$I = \int e^{-x^2} \cos x dx \text{ by Gauss two}$$

Point Quadrative formula

$$I = \int e^{-x^2} \cos x dx$$

$$I = \int (\frac{1}{\sqrt{2}}) + f(\frac{1}{\sqrt{3}})$$

$$= e^{-x^2} \cos x$$

$$I = f(\frac{1}{\sqrt{2}}) + f(\frac{1}{\sqrt{3}})$$

$$= e^{-x^2} \cos (\frac{1}{\sqrt{3}}) + e^{-x^2} \cos (\frac{1}{\sqrt{3}})$$

$$= e^{-x^2} \cos (\frac{1}{\sqrt{3}}) + e^{-x^2} \cos (\frac{1}{\sqrt{3}})$$

$$= e^{-x^2} \cos (\frac{1}{\sqrt{3}}) + \cos (\frac{1}{\sqrt{3}})$$

$$I = 1 \cdot 2008$$

Apply Gauss two point formula

to evaluate $\int_{-1}^{1} \frac{1}{1+x^2} dx$

Solution

$$I = \int_{-1}^{1} \frac{1}{1+x^2} dx$$

$$f(\pi) = \frac{1}{1+x^{2}}$$

$$T = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

$$= \frac{1}{1+(\frac{1}{\sqrt{3}})^{2}} + \frac{1}{1+(\frac{1}{\sqrt{3}})^{2}}$$

$$= \frac{3}{4} + \frac{3}{4}$$

$$= \frac{6}{4}$$

$$= 1.5$$

Evaluate the integral $T = \int_{1+x}^{2x} dx$

$$\text{using Craumian two Point formula}$$

$$T = \int_{1+x^{4}}^{2x} dx$$

$$f(x) = \frac{2x}{1+x^{4}}, \quad a = 1, \quad b = 2$$

$$x = \frac{a+b}{a} + (\frac{b-a}{2})t$$

$$x = \frac{3}{2} + \frac{1}{2}t$$

$$dx = \frac{1}{2}dt$$

$$I = \int \frac{2^{4} \left(\frac{3}{2} + \frac{1}{9}t\right)}{1 + \left(\frac{3}{2} + \frac{1}{2}t\right)^{4}} \cdot \frac{dt}{2^{4}}$$

$$= \int \frac{3 + t}{1 + \left(\frac{3 + t}{2}\right)^{4}} dt$$

$$g(t) = \frac{3 + t}{1 + \left(\frac{3 + t}{2}\right)^{4}}$$

$$I = g(\frac{1}{3}) + g(\frac{1}{3})$$

$$= \frac{3 - \frac{1}{3}}{2} + \frac{3 + \frac{1}{3}}{2}$$

$$1 - \left(\frac{3 - \frac{1}{3}}{2}\right)^{4} + \frac{3 + \frac{1}{3}}{2}$$

$$= \frac{1 \cdot 2113}{3 \cdot 1530} + \frac{1 \cdot 7887}{11 \cdot 2359}$$

$$= 0 \cdot 3841 + 0 \cdot 1591$$

$$= 0 \cdot 5434.$$

$$= \frac{T}{4} \left[0.3259 + 0.9454 \right]$$

$$= 0.9985$$
Graunian Three Point Quadrature formula:
$$T = \int_{b}^{b} f(x) dx$$

$$Take \quad \chi = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right) t$$

$$d\chi = \left(\frac{b-a}{2}\right) dt$$

$$T = \int_{0}^{b} g(t) dt = \frac{5}{9} \left[g\left(-\sqrt{3}\right) + g\left(\sqrt{3}\right) \right] + \frac{8}{9} g(t)$$

$$V = \int_{0}^{b} \frac{d\chi}{1+\chi^{2}} \quad using \quad 3 \quad point \quad \text{Quadrature}$$

$$V = \int_{0}^{b} \frac{d\chi}{1+\chi^{2}}$$

$$V = \int_{0}^{b} \frac{d\chi}{1+\chi^{2}} + \int_{0}^{b} \frac{d\chi}{1+\chi^{2}} + \int_{0}^{b} \frac{dx}{1+\chi^{2}} + \int_{0}^{b} \frac$$

$$dx = \left(\frac{b-a}{2}\right) dt$$

$$= \begin{cases} x = \frac{1}{2} + \frac{1}{2}t \\ dx = \frac{1}{2} dt \end{cases}$$

$$I = \int_{-1}^{1} \frac{\frac{1}{2} dt}{1 + \left(\frac{1+t}{2}\right)^{2}} = \frac{1}{2} \int_{-1}^{1} \frac{dt}{1 + \left(\frac{1+t}{2}\right)^{2}}$$

$$\therefore g(t) = \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}}$$

$$I = \frac{1}{2} \int_{-1}^{1} \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}} + \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}} + \frac{8}{9} g(0)$$

$$= \frac{1}{2} \int_{-1}^{1} \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}} + \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}} + \frac{8}{9} \left[\frac{1+t}{2}\right]^{2}$$

$$= \frac{1}{2} \int_{-1}^{1} \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}} + \frac{1}{1 + \left(\frac{1+t}{2}\right)^{2}} + \frac{8}{9} \left[\frac{1+t}{2}\right]^{2}$$

$$= 0.7853.$$

Apply three point Gaussian Quadratione formula to evaluate
$$\int \frac{3 \ln x}{3 \ln x} dx$$

$$I = \int \frac{\sin x}{x} dx$$

$$I = \int \frac{\sin x}{x} dx$$

$$I = \left(\frac{b+a}{2}\right) + \left(\frac{b-a}{2}\right) + \left(\frac{b-a}{2}$$

$$g(-\sqrt{3}) = \frac{3 \text{ in } \int -\sqrt{3} + 1}{2} = \frac{0.1125}{0.2254} = 0.499$$

$$I = \frac{5}{9} \int g(-\sqrt{3}) + g(\sqrt{3}) \int + \frac{8}{9} g(0)$$

$$= \frac{5}{9} \int 0.499 + 0.437) + \frac{8}{9} (0.47943)$$

$$= 0.52 + 0.42616$$

$$= 0.94616$$

(3) Evaluate
$$\int_{0.1 + (x+1)^{4}}^{2} \frac{x^{2} + 3x + 1}{1 + (x+1)^{4}} dx \quad \text{by Gaussian Heree}$$

$$I = \int_{0.1 + (x+1)^{4}}^{2} \frac{x^{2} + 3x + 1}{1 + (x+1)^{4}} dx \quad \text{by Gaussian Heree}$$

$$I = \int_{0.1 + (x+1)^{4}}^{2} \frac{x^{2} + 3x + 1}{1 + (x+1)^{4}} dx \quad \text{a = 0, b = 2}$$

$$\chi = \frac{b + 0}{2} + \frac{b - 0}{3} dt$$

$$d\chi = \left(\frac{b - a}{2}\right) dt$$

$$= \lambda \times = \frac{1}{1} + \frac{1}{1$$

	Double Integration
	Trapemoidal Trule: $I = \iint f(x,y) dx dy$
	T = [Day w dr dy
	I - J J F(x, 9) - 0
	I = RK Sum q Jown Corners +
	0 0000
	+ 4 (Sum & interier Values)]
	+ 415000 9
9	
	a vide
	Simpsons enule
	er (c. a your corners +
	$I = \frac{h \kappa}{9} \int Sum g form corners +$
	2 (Sum g odd position values) + 4 (Sum g even position values)
	21 30011 9
	Boundary
	+ 4 (Sum g odd position values) + 8 (Sum g even position values
	+4 (Sum g odd position
	odd rows
	1 16 (Sum g even
	+8 (Sum 9 odd position values) + 16 (Sum q even position value)
	even rous.
	I = RK Sylon of John com
	- nr 1 Com of TV
	V= 17 3900

$$T = \frac{0.1 \times 0.1}{4} \left[0.5 + 0.4167 + 0.4545 + 0.3846 + 2 (0.4762 + 0.4545 + 0.4348 + 0.4167 + 0.4) + 0.4 + 0.4545 + 0.4348 + 0.4167 + 0.4) + 10.4545 + 0.4348 + 0.4167) \right]$$

$$= \frac{0.1 \times 0.1}{4} \left[1.7558 + 6.9864 + 5.2246 \right]$$

$$= \frac{0.1 \times 0.1}{4} \times 13.9662 = 0.0349$$

$$= \frac{0.1 \times 0.1}{4} \times 13.9662 = 0.0349$$
Evaluate
$$\int_{-1}^{2} \frac{1}{x^{2} + y^{2}} dx dy, \text{ numerically with along } y - \text{direction and } k = 0.25$$

$$= \int_{-1}^{2} \frac{1}{x^{2} + y^{2}} dx dy$$

$$f(x, y) = \int_{-1}^{2} \frac{1}{x^{2} + y^{2}} dx dy$$

$$= \int_{-1}^{1} \frac{1}{x^{2} + y^{2}} dx dy$$

7785	yx 1 1.2 1.4 1.6 1.8 2						
5720.	1 6.5 0.4098 0.3378 0.2809 0.2359 0.2						
	1.25 6.3902 0.3331 0.2839 0.2426 0.2082 0-1798						
Owe	1.5 0.30170-2710 0.2375 0.2079 0.1821 0.16						
	1.75 0.2462 0.2221 0.1991 0.1719 0.1587 0.1416						
	2 0.2 0.1838 0.1679 0.1524 0.1381 0.125						
	$T = \frac{(0.2)(0.25)}{4} \int 0.5 + 0.2 + 0.2 + 0.125$						
	+2(0.4098+0.3378+0.2809+0.2359						
	+ 0.1381 +0.1524 +0.1010 +0.3331)						
	1 0 0001 + 0 . 200 1 1 0 2720						
	1 -03+0-2110						
	+0.20821 +0.2079 +0.1821+0.2221 +0.1991 +0.1779 +0.1587)]						
	= (0.2)(0.25) [1.025 + 6.6642 + 10.8964)						
	= 0.2323.						

3. Evaluate $I = \int_{0}^{1/2} \int_{0}^{1/2} \frac{\sin(xy)}{1 + xy} dx dy using$ Simpson's stule with $f_1 = k = 1/4$
$T = \int_0^{1/2} \int_0^{1/2} \frac{3in(xy)}{1+xy} dx dy$
$f(x_1y) = \frac{\sin xy}{1+xy}$ By Simpsons $\frac{1}{3}$ stude,
I = \frac{\text{R}}{9} \[\text{Sum g fowr corners } + \\ 2 \(\left\{ \text{um g odd position} \) + \(\text{H} \(\text{SEP} \) \\ + \(\text{SOP} \) + \(\text{SEP} \) \\ \tag{Ad rows}
+ 8 (SOP) + 16 (SEP)] even nows
TO 1 0 120 130 0 108
1 1/4 2 0 3 30-1108 30-1979

$$T = \frac{0.1 \times 0.1}{9} \left[0.5 + 0.4167 + 0.35 + 1 + 0.2976 + 2 \left[0.4545 + 0.4167 + 0.324740.340 \right] + 4 \left[0.4545 + 0.4167 + 0.324740.340 \right] + 4 \left[0.4762 + 0.4248 + 0.3788 + 0.3246 \right] + 0.3401 + 0.3106 + 0.4545 + 0.3246 \right] + 8 \left(0.432 + 0.3497 \right) + 8 \left(0.432 + 0.3497 \right) + 8 \left(0.4329 + 0.3344 \right) \right] = \frac{0.100}{92} \left[1.5714 + 3.0862 + 12.4004 + 1.5152 + 6.0728 + 6.1032 + 24.4624 \right]$$

$$T = 0.0613$$
5 Evaluate
$$\int_{0.25}^{2} \frac{1}{1} xy dx dy using$$

$$\lim_{h \to \infty} \int_{0.25}^{2} \frac{1}{1} xy dx dy$$

1			•					
2000-0144 2000-0144	yx	0	10.25	0.5	0.15			
T042-0-4	0018	0	0	10	0	0		
(835.0+ (986.0+	0.5	0	0.5	-1	1.5	2		
	(1/69	0	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2	3	4		
F	1.5	0	1.5	3	4.5	6		
	2	0	2	4	6	8		
$T = \frac{0.25 \times 0.5}{9} \int_{0.25 \times 0.5} 8 + 16 + 64 + 8 + 32 + 4 + 128$ $T = 4$								
	1 + 1	J 6000	ab just	o d	Sadavia Angana	ž		
					nie			
		-2.0-						