$$\frac{\text{Numerical Methods}}{\text{Unit}-2}$$

$$\frac{\text{Intempolation and Approximation}}{\text{Intempolation formula (unequal intervals)}}$$

$$y = \beta(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}, y_0$$

$$+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_3)(x_1-x_3)}, y_1$$

$$+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_3-x_1)(x_2-x_3)}, y_2$$

$$+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}, y_3$$

$$\frac{(x_2-x_0)(x_3-x_1)(x_3-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}, y_3$$

$$\frac{(x_2-x_0)(x_3-x_1)(x_3-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}, y_3$$

$$\frac{(x_2-x_0)(x_3-x_1)(x_3-x_2)}{(x_0-x_1)(x_0-x_2)}, y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}, y_0$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_2-x_1)}, y_2$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_1-x_2)}, y_0 + \frac{(x_1-x_0)(x_1-x_2)}{(x_1-x_0)(x_1-x_2)}, y_0$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_2-x_1)}, y_2$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_1-x_2)}, y_0 + \frac{(x_1-x_0)(x_1-x_2)}{(x_1-x_0)(x_1-x_2)}, y_0$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_2-x_1)}, y_2$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_1-x_1)}, y_3$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_1-x_1)}, y_3$$

$$\frac{(x_1-x_0)(x_1-x_1)}{(x_1-x_0)(x_1-x_1)}, y_3$$

```
y(2) = \frac{(2-1)(2-3)(2-4)(2-5)}{(0-1)(0-3)(0-4)(0-5)} (0)
                   + (2-6)(2-3)(2-4)(2-5-)
                  (1-0) (1-3)(1-4) (1-5) (1)
+(2-0) (2-1) (2-4) (2-5) (81)
(3-0) (3-1) (3-4) (3-5)
                    + (2-0)(2-1)(2-3)(2-5)
                       (4-0)(4-1) (4-3)(4-5) (256)
                     +(2-0)(2-1)(2-3)(2-4) (625) (5-0) (5-1) (5-3) (5-4)
           =\frac{(2)(-1)(-2)(-3)}{(1)(-2)(-3)(-4)}+\frac{(2)(1)(-2)(-3)}{(3)(2)(-1)(-2)}(81)
+ (2)(1)(-1)(-3) (256) + (2)(1)(-1)(-2)(625)
(4)(3)(1)(-1) (256) + (2)(1)(-1)(-2)(625)
            =\frac{12}{24}+\frac{12}{12}(81)-\frac{6}{12}(256)+\frac{4}{40}(625)
           = = +81-128+62.5
          = 0.5 + 81 - 128 + 62.5 = 16
     3) Use Lagranges Method to find \log_{10} 656, given that \log_{10} 654 = 2.8156, \log_{10} 658 = 2.8182, \log_{10} 659 = 2.8189 and \log_{10} 661 = 2.8202.
          soln
                          654 658 659
                         2.8156 2.8182 2.8189
                                                                   2.8202
          y=109, x
```

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_3)(x_0 - x_3)} \cdot y_0$$

$$+ (x - x_0)(x - x_2)(x_0 - x_3) \cdot y_1$$

$$+ (x - x_0)(x_0 - x_3)(x_0 - x_3) \cdot y_2$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_2$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_1)(x_0 - x_3) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_0)(x_0 - x_0) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_0)(x_0 - x_0) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_0)(x_0 - x_0) \cdot y_3$$

$$+ (x_0 - x_0)(x_0 - x_0) \cdot y_$$

$$\begin{array}{lll} \frac{366}{y_0} & \frac{3}{y_0} = 3 & \frac{3}{y_0} = 17 & \frac{3}{y_0} = 9 & \frac{3}{y_0} = 10 \\ y_0 = 168 & y_1 = 120 & y_2 = 72 & y_3 = 63 \end{array}. \\ 31 & y = \frac{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} \cdot y_0 \\ & + \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_2)}{(x_1 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_1 \\ & + \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_2 \\ & + \frac{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)}{(x_0 - x_0)(x_0 - x_1)(x_0 - x_3)} \cdot y_3 \end{array}$$

$$\begin{array}{l} \text{Ret} & x = 6 \\ y = \frac{6}{16} & = \frac{6}{16} \cdot \frac{16}{16} \cdot \frac{9}{16} \cdot \frac{10}{16} \cdot \frac{16}{16} \cdot \frac{9}{16} \cdot \frac{10}{16} \cdot \frac{10}$$

5) Gruien the values $ x $	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Luc A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5) Guien the values 17 31 3	35
Find $f(27)$ by (27.2) $(27$	× 14 11.0 3	29.1
Find $f(27)$ by (27.2) $(27$	P(M) 68-7 640 47	interpolation
$\begin{array}{lll} & & & & & & & & & & & & & & & & & &$	1 P(27) by using Lagrange	/S
$\begin{array}{lll} & & & & & & & & & & & & & & & & & &$	Find F(2+)	
$y_{0} = 68.7 y_{1} = 64 y_{2} = 44 y_{3} = 39.1$ $y_{0} = 68.7 y_{1} = 64 y_{2} = 44 y_{3} = 39.1$ $y = \beta(\pi) = \frac{(\chi - \chi_{1})(\chi - \chi_{2})(\chi - \chi_{3})}{(\chi_{0} - \chi_{1})(\chi_{0} - \chi_{3})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{2})(\chi - \chi_{3})}{(\chi_{1} - \chi_{0})(\chi_{1} - \chi_{1})(\chi - \chi_{2})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi - \chi_{2})}{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{3})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi - \chi_{2})}{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{3})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi - \chi_{2})}{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{3})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{1})}{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})}{(\chi_{1} - 1 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1} - 3 + \chi_{1})} \cdot y_{0} + \frac{(\chi - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - 3 + \chi_{1})(\chi_{1$	formula X2	=35
$y = \rho(\pi) = \frac{(\pi - \pi_{1})(\pi - \pi_{2})(\pi - \pi_{3})}{(\pi_{0} - \pi_{1})(\pi_{0} - \pi_{3})(\pi_{0} - \pi_{3})} \cdot y_{0} + \frac{(\pi - \pi_{0})(\pi_{1} - \pi_{2})(\pi_{1} - \pi_{3})}{(\pi_{1} - \pi_{0})(\pi_{1} - \pi_{3})(\pi_{1} - \pi_{3})} \cdot y_{1} + \frac{(\pi - \pi_{0})(\pi_{1} - \pi_{1})(\pi_{1} - \pi_{2})}{(\pi_{2} - \pi_{0})(\pi_{2} - \pi_{1})(\pi_{2} - \pi_{3})} \cdot y_{2} + \frac{(\pi - \pi_{0})(\pi_{1} - \pi_{1})(\pi_{1} - \pi_{2})}{(\pi_{3} - \pi_{0})(\pi_{3} - \pi_{1})(\pi_{3} - \pi_{1})(\pi_{3} - \pi_{3})} \cdot y_{2} + \frac{(\pi - \pi_{0})(\pi_{1} - \pi_{1})(\pi_{1} - \pi_{2})}{(\pi_{3} - \pi_{0})(\pi_{3} - \pi_{1})(\pi_{3} - \pi_{1})(\pi_{3} - \pi_{1})} \cdot y_{2} + \frac{(\pi - \pi_{0})(\pi_{1} - \pi_{1})(\pi_{2} - \pi_{1})(\pi_{3} - \pi_{1})(\pi_$	1300 - 14 X1=11	=39.1
$y = \beta(\pi) = \frac{(\chi - \chi_{1})(\chi - \chi_{2})(\chi_{0} - \chi_{3})}{(\chi_{0} - \chi_{1})(\chi_{0} - \chi_{3})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{3})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{3} - \chi_{0})(\chi_{3} - \chi_{1})(\chi_{3} - \chi_{1})(\chi_{3} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})$	70 = 17 4 = 64 4 2 = 44 3	(x xx-x.)
$y = \beta(\pi) = \frac{(\chi - \chi_{1})(\chi - \chi_{2})(\chi_{0} - \chi_{3})}{(\chi_{0} - \chi_{1})(\chi_{0} - \chi_{3})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{3})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{3} - \chi_{0})(\chi_{3} - \chi_{1})(\chi_{3} - \chi_{1})(\chi_{3} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{0})(\chi_{2} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{2} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})}{(\chi_{1} - \chi_{1})(\chi_{1} - \chi_{2})} \cdot \frac{(\chi_{1} - \chi_{1})$	yo = 68. 1 (x-x3) y +	(x-x0)x-121, y
$P_{i}t = 37$ $y = f(27) = \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} \cdot (68 \cdot 7)$ $+ \frac{(27-14)(27-38)(27-35)}{(17-14)(17-31)(17-35)} \cdot (64 \cdot 0)$ $+ \frac{(27-14)(27-17)(27-35)}{(17-14)(31-17)(31-35)} \cdot (44 \cdot 0)$ $+ \frac{(27-14)(31-17)(31-35)}{(37-14)(31-17)(37-31)} \cdot (44 \cdot 0)$ $+ \frac{(27-14)(31-17)(27-31)}{(35-17)(35-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(35-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(35-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(13)(10)(-8)(44)}{(33)(10)(-9)(44)} \cdot (33)(10)(-9)(33)$	(a) (X) (X -)	~ 1/x -d)(1/3/
$P_{i}t = 37$ $y = f(27) = \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} \cdot (68 \cdot 7)$ $+ \frac{(27-14)(27-31)(27-35)}{(17-14)(17-31)(17-35)} \cdot (64 \cdot 0)$ $+ \frac{(27-14)(27-17)(27-35)}{(17-14)(31-17)(31-35)} \cdot (44 \cdot 0)$ $+ \frac{(27-14)(31-17)(31-35)}{(37-14)(31-17)(37-31)} \cdot (44 \cdot 0)$ $+ \frac{(27-14)(31-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(35-14)(35-17)(27-31)}{(35-17)(27-31)} \cdot (39 \cdot 1)$ $+ \frac{(13)(10)(-8)(44)}{(30-17)(-21)} \cdot (31-35) \cdot (31-35)$	$y = f(x)$ $(x_0 - x_1)(x_0 - x_2)(x_0)$	+ (x-x0)(x-x1)(x-x2,y
$y = f(27) = \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} (68.7)$ $+ \frac{(27-14)(27-31)(27-35)}{(17-14)(17-31)(17-35)} (64.0)$ $+ \frac{(27-14)(27-17)(27-35)}{(27-17)(27-35)} (44.0)$ $+ \frac{(27-14)(31-17)(31-35)}{(35-14)(35-17)(35-31)} (39.1)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(35-31)} (39.1)$ $= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} (68.7) + \frac{13}{(3)(-14)(-8)} (3)(-14)(-8)$ $+ \frac{(13)(10)(-8)}{(-3)(-17)(-21)} (44)$	2 1 - 2) (1 - 3 - 1	(M3-N0) (M3-X1) (X3 M2 3
$p_{ut} = 27$ $y = \beta(27) = \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)} (68.7)$ $+ \frac{(27-14)(27-131)(27-35)}{(17-14)(17-31)(17-35)} (64.0)$ $+ \frac{(27-14)(27-17)(27-31)}{(37-17)(27-31)} (44.0)$ $+ \frac{(27-14)(31-17)(27-31)}{(35-17)(35-31)} (39.1)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(35-31)} (39.1)$ $= \frac{(10)(-4)(-2)(68.7)}{(-3)(-17)(-21)} (68.7) + \frac{13(-4)(-8)}{(3)(-14)(-8)} (39.1)$ $= \frac{(10)(-4)(-2)(68.7)}{(-3)(-17)(-21)} (35-31)$ $= \frac{(10)(-4)(-2)(68.7)}{(-3)(-17)(-21)} (35-31)$	(x2-x0) (x2-x1) (x2 3	100 11
$+ \frac{(27-14)(27-31)(17-35)}{(17-14)(17-31)(17-35)}$ $+ \frac{(27-14)(27-17)(27-35)}{(31-14)(31-17)(27-31)} (44.0)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(27-31)} (39.1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(35-31)} (39.1)$ $= \frac{(10)(-4)(-2)(68-7)}{(-3)(-17)(-21)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} (44) + \frac{(13)(10)(-4)(3)}{(3)(10)(-4)(3)} (44)$	1 = 27	35).(68-¥)
$+ \frac{(27-14)(27-31)(17-35)}{(17-14)(17-31)(17-35)}$ $+ \frac{(27-14)(27-17)(27-35)}{(31-14)(31-17)(27-31)} (44.0)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(27-31)} (39.1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(35-31)} (39.1)$ $= \frac{(10)(-4)(-2)(68-7)}{(-3)(-17)(-21)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} (44) + \frac{(13)(10)(-4)(3)}{(3)(10)(-4)(3)} (44)$	Put 2 - (27-17) (27-31) (14-	35-)
$+ \frac{(27-14)(27-31)(17-35)}{(17-14)(17-31)(17-35)}$ $+ \frac{(27-14)(27-17)(27-35)}{(31-14)(31-17)(27-31)} (44.0)$ $+ \frac{(27-14)(27-17)(27-31)}{(35-17)(27-31)} (39.1)$ $+ \frac{(27-14)(35-17)(27-31)}{(35-17)(35-31)} (39.1)$ $= \frac{(10)(-4)(-2)(68-7)}{(-3)(-17)(-21)} + \frac{13(-4)(-8)}{(3)(-14)(-8)} (44) + \frac{(13)(10)(-4)(3)}{(3)(10)(-4)(3)} (44)$	y = f(27) = 114-17)(14-31)	() (())
$ \frac{(17-14)(17)(17)(27-35)}{(37-14)(31-17)(31-35)} (44.0) $ $ + \frac{(27-14)(31-17)(31-35)}{(37-14)(27-31)} (39.1) $ $ + \frac{(27-14)(27-17)(27-31)}{(35-17)(35-31)} (39.1) $ $ = \frac{(10)(-4)(-8)}{(35-17)(-21)} (68.7) + \frac{13}{(3)(-14)(-8)} (43)(-14)(-8) $ $ = \frac{(13)(10)(-8)}{(13)(10)(-8)} (44) + \frac{(13)(10)(-4)}{(13)(10)(-4)} (35-17)(10) $		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(27-14) (27-17)	(27-35)
$\frac{1}{(35-14)} \frac{(35-17)}{(35-31)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-31)} \frac{(35-31)}$		
$\frac{1}{(35-14)} \frac{(35-17)}{(35-31)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-17)} \frac{(35-31)}{(35-31)} \frac{(35-31)}$	(31-14)(3)	1)(27-31) (39.1)
$= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} (68-7) + \frac{13(-4)(-8)}{(3)(-14)(-8)} (44) + \frac{(13)(10)(-4)}{(-3)(10)(-8)} (44)$	+ (27-14) (27-1	(35-31)
$= \frac{(10)(-4)(-8)}{(-3)(-17)(-21)} (68-7) (3)(-14)(-8)$ $= \frac{(13)(10)(-8)}{(44)} (44) + \frac{(13)(10)(-8)}{(4)(12)(4)}$	(33-11)	10 (-4) (-821)
(13)(10)(-8) (44)	(68-	7) + 3(14)(-8)
(13)(10)(-8) (44)	$=\frac{(10)(-4)(-21)}{(17)(-21)}$	(3)(11)(-4)
+ (13)(18)(4)	(3) 110 1111	1(13)
116) [-4]	, (13)(10)	(4)(0)(4)
(17) (14)	(17) (4)	2+48.07-13.45
= -20.52 + 35.22 + 48.07 - 13.45	= -20.52 + 35	

6) Find the Missing term in the following table using Lagranges interpolation
table using Lagranges interpolation
12 3 7
y 1 3 9 - 81
3dn 21 = 4
1 2 1 1 2 2
y = 1 9, -3 32 'S
(x-x1) (x-x2) (x-13). y
/ / / / / / / / / / / / / / / / / / / /
$(\gamma - \gamma_0)$ $(\gamma - \gamma_2)$ $(\gamma - \gamma_2)$
() () () ()
+ (n-no) (n x) 2
(7/2-X0) (N-X,) (N2-X2) 2
+ (x-x0) (x-x1) (x3-x2) 3.
$+ \frac{(\chi_{3}-\chi_{0})(\chi_{3}-\chi_{1})(\chi_{3}-\chi_{2})}{(\chi_{3}-\chi_{0})(\chi_{3}-\chi_{1})(\chi_{3}-\chi_{2})} \cdot 3.$
Put $x = 3$ $y = \beta(3) = \frac{(3-1)(3-2)(3-4)}{(0-1)(0-2)(0-4)} (1) + \frac{(3-0)(3-2)(3-4)}{(1-0)(1-2)(1-4)} (3)$
$y = P(3) = \frac{(3)(0-2)(0-4)}{(0-1)(0-2)(0-4)}$
1/2-0/0 -/9/1/03/1/03/1/01/
(2-0)(2-1)(2-4)
$= -\frac{2}{8} \left\{ -3 \right\} + \frac{27}{2} + \frac{81}{4}$
=31
1) Using Lagranges formula frove
$y_1 = y_2 - 0.3 (y_5 - y_{-3}) + 0.2 (y_{-3} + y_{-5})$

901n y 5 , y 3 , y 5 oceur in the answers.
So we can have the table
y y y y y y
$y = f(x) = (x-x_1)(x-x_2)(x-x_3)$
$(\chi - \chi_1)(\chi_2 - \chi_2)(\chi_1 - \chi_2)$
+ (x-no)(x-n2)(x-n3). y
(x,-no) (x,-n2)(x,-x3) -3
+ (x-x0) (x-x,) (x-x3) 4
(x=x0)(x-x1)(x-x3) 3
+ (x-x0)(x-x,)(x-x3)
$(x_3-x_0)(x_3-x_1)(x_3-x_2)$
put $x=1$
$y = P(1) = (1+3)(1-3)(1-5) \cdot y$
1-5-3)(-5-3)
1 -3)(1-3)(1-3)
(-3+5)(-3-3)(-3-5)
+ (1+5)(1+3)(1-5) y (2+5)(3+3)(3-5) 3
(215)(3+3)(3-5) 3
+ (3+5)(3+3)(3-3)
+ (3+5)(3+3)(3-3) 15+5)(5+3)(5-3)
$= (4)(-2)(-4) \cdot y + \frac{(6)(-2)(-4)}{(2)(-6)(-8)} \cdot y $ $= (4)(-2)(-4) \cdot y + \frac{(6)(-2)(-4)}{(2)(-6)(-8)} \cdot y $
(-2)(-8)(-10) $(2)(-6)(-6)$
$+\frac{(6)(4)(-4)}{(8)(6)(-2)} \cdot y_3 + \frac{(6)(4)(-2)}{(10)(8)(2)} y_5 -$
-0.24 - +0.54 + 40.34
021, 7001 71031

/-	Newton's $y = f(x)$) = 4 +	(x-x0) AF	ne formula $(x_0) + (x - x_0)$ $(x_0) (x - x_2) \Delta^2$	(x-x,) 4 f(x)
O			divided dy	igerene sormi wing data.	ula find
	x	P(M)	Af(x)	1°pin)	13 Flat)
	2	5	5-1 = 4 2-1 5-5 = 0	$\frac{0-4}{7-1} = \frac{-4}{b}$	-1+4
(4)3	7	5	4-5 = -1	$\frac{-1-0}{8-2} = \frac{-1}{6}$	8-1 = 7
	8	4 8	2-7	Stell	

$= x^{3} \left[\frac{1}{14} \right] + x^{2} \left[-\frac{4}{6} 3 - \frac{3}{14} - \frac{7}{14} \right]$
+x[4+1号+3+1号-14]
$f(x) = 1x^3 - 29x^2 + 107x - \frac{10}{43}$
Put $n=6$ $y = \beta(6) = \frac{1}{14} (6)^3 - \frac{99}{24} (6)^2 + \frac{107}{14} (6) - \frac{169}{36}$
=15-428-49.714+45.857-0.444 =15-428-49.714+45.857-0.444
=11.127
the following data by Newtons accounts
$\begin{bmatrix} \chi & -4 & -1 & 0 & \lambda & \lambda \\ & & & & & & & & & & & & & & &$
[f(x) 1245]
$\frac{g_{0}}{\pi}$ $f(x)$ $\Delta f(x)$ $\Delta^{2}f(n)$ $\Delta^{3}f(n)$ $\Delta^{4}f(x)$
-4 1245 33-1245 +1+4 -28+464 -94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 1335

$$y = \beta(x) = \beta(x_0) + (x - x_0) \Delta \beta(x) + (x - x_0)(x - x_1) \Delta^2 \beta(x) + (x - x_0)(x - x_1)(x - x_2) \Delta^3 \beta(x) + (x - x_0)(x - x_1)(x - x_2) \Delta^3 \beta(x) + (x - x_0)(x - x_1)(x - x_2) \Delta^3 \beta(x)$$

$$= 1245 + (x + 4)(-404) + (x + 4)(x + 1)(94) + (x + 4)(x + 1)(x - 0)(x - 2)(3) + (x + 4)(x + 1)(x - 0)(4) + (x + 4)(x + 1)(x - 0)(x - 2)(3) + (x + 4)(x + 4)(x$$

	×	y= F(x)	DE(X)	SPIN)	1 13p(x)
	0 1 2 5- y=f(x)	$ \begin{array}{c} 2 \\ 3 \\ 12 \\ 147 \\ = y_0 + (x - \frac{1}{2} + (x - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ $	$\frac{3-2}{1-0} = 0$	$\frac{9-1}{2-6} = 4$ $\frac{45-9}{5-1} = 9$ $(x-x_0)(x-2)$	9-4 5-0=1)
Paradi Paradi	= 2+4	$x^2 - 4x + 4$ $+ x^2 - x$ 4	3+4-4+2) +2×	
		= 7.	8	d france	(3) for

Cubic Spline Interpolation formula.

$$g(x) = \frac{1}{6R} \left[(x_i - x)^3 M_{i-1} - (x_{i-1} - x)^3 M_i \right] + \frac{1}{R} (x_i - x) \left[y_{i-1} - \frac{R^2}{6} M_{i-1} \right] - \frac{1}{R} (x_{i-1} - x) \left[y_{i} - \frac{R^2}{6} M_{i-1} \right] - \frac{1}{R} (x_{i-1} - x) \left[y_{i} - \frac{R^2}{6} M_{i-1} \right] - \frac{1}{R} (x_{i-1} - x) \left[y_{i} - \frac{R^2}{6} M_{i-1} \right]$$

Where, $M_{i-1} + hM_{i} + M_{i+1} = \frac{6}{6} \left[y_{i-1} - 2y_{i} + y_{i+1} \right]$

When $M_{0} = M_{0} = 0$

Obtain cubic spline polynomial which best with the following data, given that $y_{0} = y_{3} = 0$

$$x - 1 - x_{0} \left[x_{0} + x_{0} \right] \left[x_{0} - x_{0} + x_{0} \right] - \frac{2}{3} \left[x_{0} - x_{0} + x_{0} \right] - \frac{2}{$$

$$S(x) = \frac{1}{6} \left[(x_2 - x_1)^3 M_1 - .(x_1 - x_1)^3 M_2 + (x_2 - x_1) \left[y_1 - \frac{1}{6} M_1 \right] - (x_1 - x_1) \left[y_2 - \frac{1}{6} M_2 \right]$$

$$= \frac{1}{6} \left[(1 - x_1)^3 (-12) - (0 - x_1)^3 (48) \right]$$

$$= \frac{1}{6} \left[(1 - x_1)^3 (-12) - (0 - x_1) + (1 - x_1) \left[(1 - x_1)^3 + 48 x^3 \right] + 3 (1 - x_1) - 5 x$$

$$= \frac{1}{6} \left[-12 (1 - x_1)^3 + 48 x^3 \right] + 48 x^3$$

$$= \frac{1}{6} \left[-12 (1 - x_1)^3 + 48 x^3 + 3 (1 - x_1) - 5 x \right]$$

$$= \frac{1}{6} \left[-12 (1 - x_1)^3 + 48 x^3 + 3 (1 - x_1) - 5 x \right]$$

$$= \frac{1}{6} \left[-12 (1 - x_1)^3 + 48 x^3 + 3 (1 - x_1) - 5 x \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 \right]$$

$$= \frac{1}{6} \left[-12 + 12 x^2 + 36 x - 36 x^2 + 48 x^3 + 48 x^3$$

$$= 8 (2-x)^{3} + (2-x) (-5) - 35 \cdot (1-x)$$

$$= 8 \left[8 - x^{3} - 12x + 6x^{2} \right] - 10 + 5x - 35 + 35,$$

$$= 64 - 8x^{3} - 96x + 48x^{2} - 10 + 5x - 35 + 35x$$

$$\boxed{S(x) = -8x^{3} + 48x^{2} - 56x + 19, 1 < n < 2}$$

$$The cubic Spline Polynomial is$$

$$S(x) = \begin{cases} -2x^{3} - 6x^{2} - 2x + 1 & 1 - 1 < x < 0 \\ 10x^{3} - 6x^{2} - 2x + 1 & 1 - 1 < x < 0 \end{cases}$$

$$S(x) = \begin{cases} 10x^{3} - 6x^{2} - 2x + 1 & 1 < 0 < x < 1 \\ -8x^{3} + 48x^{2} - 56x + 19, 1 < x < 2 \end{cases}$$

$$\boxed{2}$$
From the following table
$$\boxed{x} \qquad \boxed{1}_{70} \qquad \boxed{2}_{1}, \boxed{3}_{1}, \boxed{y} \qquad \boxed{-8}_{1}, \boxed{1}_{1} \qquad \boxed{18}_{1}$$
Compute $y(1.5)$ and $y'(1)$ using cubic spline
$$\boxed{3}_{1} \qquad \boxed{3}_{1}, \boxed{y} \qquad \boxed{-8}_{1} \qquad \boxed{18}_{1}$$

$$\boxed{3}_{1} \qquad \boxed{18}_{1} \qquad \boxed{18}_{$$

The cubic Spline Polynomial is
$$S(x) = \frac{1}{b} \left[(x_{1} - x)^{3} M_{1-1} - (x_{1-1} - x)^{3} M_{1} \right] + (x_{1} - x) \left[Y_{1-1} - \frac{1}{b} M_{1-1} \right] \\ + (x_{1} - x) \left[Y_{1-1} - \frac{1}{b} M_{1-1} \right] \\ - (x_{1-1} - x) \left[Y_{1} - \frac{1}{b} M_{1} \right] \right]$$

$$Case [i] \quad 1 < x < 2$$

$$Put \quad i = 1$$

$$S(x) = \frac{1}{b} \left[(x_{1} - x)^{3} M_{0} - (x_{0} - x)^{3} M_{1} \right] + (x_{1} - x) \left[Y_{0} - \frac{1}{b} M_{0} \right] \\ - (x_{0} - x) \left[Y_{1} - \frac{1}{b} M_{1} \right] \right]$$

$$= \frac{1}{b} \left[(a - x)^{3} (0) - (1 - x)^{3} (18) + (2 - x) (-8) \right] \\ - (1 - x) \left[-1 - x \right] \left[-1 - x \right] \left[-1 - x \right] \right]$$

$$= \frac{1}{b} \left[- (1 - x)^{3} (18) + (2 - x) (-8) \right] \\ - (1 - x) \left[-1 - 3 \right]$$

$$= -18 (1 - x)^{3} - 8 (2 - x) + 4 (1 - x)$$

$$= -18 (1 - x)^{3} - 16 + 8x + 4 - 4x$$

$$= -18 (1 - x)^{3} + 4x - 12 , 1 < x < 2$$

$$= -18 (1 - x)^{3} + 4x - 12 , 1 < x < 2$$

$$= -5.625$$

John @ 7 3

= 3 M, +1/M₂ + M₃ = -12

4 x 3 = 3 M₂ + 16 M₃ = 48

- 15 M₃ = -60

Solve A 7 ©

M₁ - 15 M₃ = -60

Solve A 7 ©

M₁ = -60 + 15 M₃

M₂ = 12 - 4 M₁

M₂ = 12 - 4 M₁

M₃ = 30

M₄ = -60 + 450

M₅ = -36

The cubic Spline Polynomial is

S(x) =
$$\frac{1}{6} \int (x_1 - x_1)^3 M_{1-1} - (x_{1-1} - x_1)^3 M_{1-1}^2 + (x_{1-1} - x_1) \int y_{1-1} - \frac{1}{6} M_{1-1}^2 - (x_{1-1} - x_1) \int y_{$$

$$= \frac{1}{6} \left[-(1-x)^{3} \left(\frac{39}{7} \right) \right] + (2-x) \left[1 \right]$$

$$- \frac{1}{6} \left[-\frac{39}{7} \right]$$

$$= \frac{1}{6} \left[-\frac{39}{7} \left(1-x \right)^{3} + (2-x) + \frac{5}{7} \left(1-x \right) \right]$$

$$= \frac{1}{6} \left[-\frac{39}{7} \left(1^{3} - x^{3} - 3x + 3x^{2} \right) + 2 - x + \frac{5}{7} - \frac{5}{7} x \right]$$

$$= -\frac{5}{7} + \frac{5}{7} x^{3} + \frac{15}{7} x + \frac{15}{7} x + \frac{15}{7} x^{2} + 2 - x + \frac{5}{7} - \frac{5}{7} x$$

$$= \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + x \left(\frac{15}{7} - \frac{1}{4} - \frac{5}{7} \right)$$

$$S(x) = \frac{5}{7} x^{3} + \frac{15}{7} x^{2} + \frac{3}{7} x + 2 , 1 \le x \le 2$$

$$Case (ii) box 2 2 x < 3$$

$$Put i = 2$$

$$S(x) = \frac{1}{6} \left[(x_{2} - x)^{3} M_{1} - (x_{1} - x)^{3} M_{2} \right]$$

$$+ (x_{2} - x) \left[y_{1} - \frac{1}{6} M_{1} \right]$$

$$- (x_{1} - x) \left[y_{2} - \frac{1}{6} M_{1} \right]$$

$$= \frac{1}{6} \left[(3 - x)^{3} \frac{39}{7} - (2 - x) \left(-\frac{36}{7} \right) \right]$$

$$+ (3 - x) \left[0 - \frac{1}{6} \left(\frac{39}{7} \right) \right]$$

$$- (2 - x) \left[1 - \frac{1}{6} \left(-\frac{36}{7} \right) \right]$$

$$= \frac{1}{6} \left[\frac{30}{7} (3-x)^{3} + \frac{36}{7} (2-x) \right] + (3-x) \left(-\frac{5}{7} \right)$$

$$= (2-x) \left[1 + \frac{5}{7} \right]$$

$$= \frac{5}{7} \left[27 - 27x + 9x^{2} - x^{3} \right] + \frac{6}{7} \left[4 + x^{2} - 4x \right]$$

$$= x^{3} \left[-\frac{5}{7} \right] + x^{2} \left[\frac{45}{7} + \frac{6}{7} + \frac{13x}{7} \right]$$

$$+ x \left[135 - \frac{24}{7} + \frac{5}{7} + \frac{13}{7} \right] + \frac{135}{7} + \frac{24}{7} - \frac{15}{7}$$

$$= \frac{26}{7}$$

$$3(x) = -\frac{5}{7} x^{3} + \frac{51}{7} x^{2} - \frac{951}{7} + \frac{118}{7} + \frac{24}{7} - \frac{15}{7}$$

$$= \frac{26}{7}$$

$$3(x) = \frac{1}{6} \left[(x_{3} - x)^{3} M_{2} - (x_{2} - x) M_{3} \right]$$

$$+ (x_{3} - x) \left[y_{3} - \frac{1}{6} M_{3} \right] - (x_{2} - x) \left[y_{3} - \frac{1}{6} M_{3} \right]$$

$$= \frac{1}{6} \left[(4 - x)^{3} \left(-\frac{36}{7} \right) + (3 - x)^{3} \left(\frac{30}{7} \right) \right]$$

$$+ (4 - x) \left[1 - \frac{1}{6} \left(-\frac{36}{7} \right) \right]$$

$$+ (3 - x) \left[0 - \frac{1}{6} \left(\frac{30}{7} \right) \right]$$

$$= \frac{1}{6} \int_{-\frac{36}{7}}^{-\frac{36}{7}} \left[\frac{64 - 48x + 12x^2 - x^3}{2} \right]$$

$$= \frac{1}{6} \int_{-\frac{36}{7}}^{-\frac{36}{7}} \left[\frac{64 - 48x + 12x^2 - x^3}{2} \right]$$

$$+ (4x) \left(\frac{1 + \frac{6}{7}}{7} \right) - (3 - x) \left(\frac{-5}{7} \right)$$

$$= \frac{1}{7} \int_{-\frac{384}{7}}^{-\frac{384}{7}} + \frac{288x - 72x^2 + 6x^3 - 810}{4 + 810x + 270x^2 + 30x^3}$$

$$+ \frac{810x + 270x^2 + 30x^3}{4 + 52 - 13x + 15 - 5x} \right]$$

$$= \frac{1}{7} \int_{-\frac{36}{7}}^{-\frac{3}{7}} \left[\frac{30 + 6}{7} + x^2 \int_{-\frac{7}{7}}^{-\frac{7}{7}} - \frac{270}{7} \right]$$

$$+ x \left[\frac{288}{7} + \frac{810}{7} - 13 - 5 \right] + \left[\frac{-381}{7} - 810 + 52 + 15 \right]$$

$$= \frac{1}{7} \int_{-\frac{7}{7}}^{-\frac{3}{7}} \left[\frac{36}{7} x^3 - \frac{342}{7} x^2 + 1080x - 1127, 32x \le 4 \right]$$

$$= \frac{1}{7} \int_{-\frac{7}{7}}^{-\frac{7}{7}} \left[\frac{36}{7} x^3 - \frac{342}{7} x^2 + 1080x - 1127, 32x \le 4 \right]$$

$$= \frac{1}{7} \int_{-\frac{7}{7}}^{-\frac{7}{7}} \left[\frac{36}{7} - \frac{3}{7} \right] - \left[\frac{7}{7} - \frac{1}{7} \right] \int_{-\frac{7}{7}}^{-\frac{7}{7}} \left[\frac{36}{7} - \frac{1}{7} \right] \int_{-\frac{7}{7}}^{-\frac{7}{7}} \left[\frac{39}{7} \right] - 0 \int_{-\frac{7}{7}}^{-\frac{7}{7}} \left[\frac{39}{7} \right] \int_{-\frac{7}{7}}$$

$$= \frac{1}{6} \left[(2-x)^{3} (0) + (x-1)^{3} (18) \right] + (2-x) \left[(-6-\frac{1}{6}(0)) \right] + (x-1)^{3} (18) \right] + (2-x) (-6-6) + (x-1) (-1-3)$$

$$= \frac{1}{6} \left[(x-1)^{3} (18) \right] + (2-x) (-6-6) + (x-1) (-1-3)$$

$$= 3 (x^{3} - 3x^{2} + 3x - 1) - 12 + 6x - 4x + 4$$

$$g(x) = 3x^{3} - 9x^{2} + 11x - 11$$

$$g(x) = \frac{1}{6} \left[(x_{2} - x)^{3} M_{1} - (x_{1} - x)^{3} M_{2} \right] + (x_{2} - x) \left[y_{1} - \frac{1}{6} M_{1} \right] + (x_{2} - x) \left[y_{2} - \frac{1}{6} M_{2} \right]$$

$$= \frac{1}{6} \left[(3-x)^{3} \left[18 - (2-x)^{3} (0) \right] + (3-x) \left[-1 - \frac{1}{6} \left[18 \right] \right] - (x-2) \left[-1 - \frac{1}{6} \left[18 \right] \right]$$

$$= \frac{18}{6} \left[2y - 27x + 9x^{2} - x^{3} \right]$$

$$= \frac{18}{6} \left[2y - 27x + 9x^{2} - x^{3} \right]$$

$$= \frac{18}{6} \left[2y - 27x + 9x^{2} - x^{3} \right]$$

Symme	Newton's Cegual	10rw	and into	1 polation	gomula_
	u = 0	e(x) = 4	+ 4 24	$\frac{1}{2} + \frac{u(u-1)}{2}$	Δ y 0
	Where				
0	Using 1 Jend th	Veulons e Polyr data	forward nomial f . Heme	intempola (n) Satisf evaluate	tion formula, ying the y at x=5.
	Solo	-	- xo, h		x 1/2
E.	ж	y	Sy	139	239
	4		2		
	8	3	5	-3	6

The Newton's forward interpolation form.

$$y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta y_0^2 + \frac{u(u-1)(u-2)}{2!} \Delta y_0^2 + \frac{u(u-1)$$

(3)	From the number of behiveen	Stude 60 to	gene nts v	n bel	ow Fir weight	is the
	weight in kgs	0-40	40-60	60-80	80-100	100-120
	No-9 Students	250	/20	100	70	50
	36h u = ?	11-20 /	h = .	20	V. ,	
	u = 21	20	Dy	Dy	D3y	5 54y_
	×	y	3		1 87 0	
- 32	Below 40 Below 60 Below 80	250) 310 410	100	-30	(10	(20)
(c	Below 100	540	40 50	- 21	10.	
NC+ X _	Below 120 The New Y = Y + 4 1.		11 5	intemply + ul	olation u-1) (u-	formula i

$$y = 250 + (\frac{x-40}{20}) \cdot 120 + (\frac{x-40}{20}) \cdot (\frac{x-40}{20} - 1) \cdot x-20$$

$$+ (\frac{x-40}{20}) \cdot (\frac{x-40}{20} - 1) \cdot (\frac{x-40}{20} - 2) \cdot x-10$$

$$+ (\frac{x-40}{20}) \cdot (\frac{x-40}{20} - 1) \cdot (\frac{x-40}{20} - 2) \cdot (\frac{x-40}{20} - 3)$$

$$- \frac{24}{3} \cdot (\frac{x-40}{20}) \cdot (\frac{x-60}{20}) \cdot (\frac{x-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{x-40}{20}) \cdot (\frac{x-60}{20}) \cdot (\frac{x-80}{20}) \cdot (\frac{x-100}{20})$$

$$+ \frac{70-60}{20} \cdot (\frac{x-60}{20}) \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{5}{6} \cdot (\frac{70-40}{20}) \cdot (\frac{70-60}{20}) \cdot (\frac{70-80}{20}) \cdot (\frac{70-80}{20})$$

$$+ \frac{$$

	Neuton's Backword Interpolation gormula
	$y = y_0 + \frac{v}{1!} \nabla y_n + \frac{v(v+1)}{2} \nabla^2 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+1)(v+2)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+2)(v+2)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+2)(v+2)(v+2)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+2)(v+2)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+2)(v+2)(v+2)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + \frac{v(v+2)(v+2)(v+2)(v+2)(v+2)(v+2)(v+2)}{3!} \nabla^3 y_n + v(v+2)(v+2)(v+2)(v+2)(v+2)(v+2)(v+2)(v+2$
	where $v = \frac{x - x_n}{x}$
0	Use Newton's backward deference formula to construct an interpolating polynomial of degree for the data.
	f(-0.75) = -0.07181250 f(-0.5) = -0.021 $f(-0.25) = 0.33493750, f(0) = 1.10100.$
	Hence find f(-13).
	$V = \frac{x - x_0}{h} \neq h = 0.25$
	$V = \frac{\chi - 0}{0.25} = \frac{\chi}{0.25}$
62	x y Py Vy
	-0.75 E0.0118120 (0.047062s)
	-0.50 -0.024750 0.3596875 0.312625 0.09375
	0.33493700 0:406375
	1.10100

The Newton's backward interpolation formule is
$$y = y_0 + \frac{y}{1!} \quad \forall y_0 + \frac{y(y+1)}{2!} \quad \forall y_0 + \frac{y(y+1)}{3!} \quad \forall y_0 + \frac{y(y+1)}{3!} \quad \forall y_0 + \frac{y(y+1)(y+2)}{3!} \quad \forall y_0 + \frac{y(y+1)(y+1)(y+2)}{3!} \quad \forall y_0 + \frac{y_0}{3!} \quad \forall y_0 + \frac{$$

	TO	min)	2	5	8	11
	A	(gm)	94.8	87.9	81.3	75.1
	Obtain using	Newl	Re Valu	e g iterpola	A tièn fo	where t=9 m
	T	Ay	*	y	₩ ² y	P3y
	2	94.8	-6	; . 9	0 - 2	
-,7536	5	87.9	-6	5.6	100000	0.1
22222	8	81.3	E	5.2	0.4	
0.01	1)	(45.1				
201	7 9 E 80		x-x		h = 3	
	The	Neutor	is Bo	releman	d interp	olation form
nintro	y =	yn+ 1	2 Pyn	+ 1000	2+1) P	$\frac{1}{2}$

$$y = 45 \cdot 1 - 6 \cdot 2 \left(\frac{x-11}{3}\right) + \left(\frac{x-11}{3}\left(\frac{x-8}{3}\right)\right)$$

$$+ \frac{(x-11)(x-8)(x-5)}{162} \times 0 \cdot 1$$

$$y(9) = 45 \cdot 1 - 6 \cdot 2 \left(\frac{9-11}{3}\right) + \frac{(9+1)(9-8)}{18} \times 0 \cdot 1$$

$$+ \frac{(9-11)(9-8)(9-5)}{162} \times 0 \cdot 1$$

$$= 45 \cdot 1 + 6 \cdot 2 - \frac{2}{15} - \frac{2}{40} - \frac{2}{40} - \frac{2}{40} - \frac{2}{40} = \frac{2}{40} - \frac{2}{40} = \frac{2}{40} - \frac{2}{40} = \frac{2$$