1- 1-
Unit - I
Eigen Value Problems.
Itenative Method: (1) Write the gn egn f(x) = 0 into the
1) Write the gr y
Write the gn egn f(x) - 0 form $x = g(x)$ Assume that $x = x_0$ be the 9100t g the
44.7
The joint approximation to the goot is go by $x_1 = \rho(x_0)$
is gn ay
111 by $x_2 = \varphi(x_1)$ $x_3 = \varphi(x_2)$
×3 = 41, 2 = 1 (1) p (4
$= \varphi(x_{n-1})$ $= \chi_n \text{ is the not iteration} + \text{ the value } g$ $= > \chi_n \text{ is the not } g \text{ the gn egn}$
wind the noth internation + me
=> × n is the not g the gn egn.
The second in
Find the most of the equation Method.
as x = 3x-1, using internation Method.
(30)11
$f(x) = \cos x - 3x + 1$ $f(0) = \cos 0 - 3(0) + 1 = 2 - 5 + ve$ $f(0) = \cos 0 - 3(0) + 1 = 0 - 3(1) + 1 - 5 - ve$
The groot lies between o and 1 1/2
The

The agn can be written as

$$0.5 \times -3x + 1 = 0$$
 $-3x = -0.5 \times -1$
 $3x = 0.59 \times 3$
 $x_1 = 0.6667$
 $x_2 = 0.6067$
 $x_3 = 0.6067$
 $x_4 = 0.6667$
 $x_4 = 0.6667$
 $x_5 = 0.6067$
 $x_6 = 0.6067$
 $x_6 = 0.6067$
 $x_6 = 0.6067$
 $x_6 = 0.6067$

$$\chi_{5} = \varphi(\chi_{4}) = \frac{1}{3} (1 + \cos \chi_{4}) = \frac{1}{3} (1 + \cos \phi \cdot 6067)$$

$$\chi_{5} = 0.6072$$

$$\chi_{6} = \varphi(\chi_{5}) = \frac{1}{3} (1 + \cos \chi_{5}) = \frac{1}{3} (1 + \cos \phi \cdot 6072)$$

$$\chi_{7} = 0.6071$$

$$\varphi(x) = \sqrt{2x+3} = (2x+3)^{1/2}$$

$$\varphi'(x) = \frac{1}{2}(2x+3)^{-1/2}$$

$$|\varphi'(x)| = |(2x+3)^{-1/2}$$

$$|\varphi'(x)| = |(2x+3)^{-$$

3 solve by iteration Method
$$3x - \log_{10} x = 7$$
 3000
 $2x - \log_{10} x - 7 = 0$
 $f(x) = 9x - \log_{10} x - 9$
 $f(x) = -3 \cdot 3010 - 3 - 9e$
 $f(x) = -3 \cdot 3010 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -3 \cdot 3979 - 3 + 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 3 - 9e$
 $f(x) = -1 \cdot 4711 - 9e$
 $f(x) = -1 \cdot 4$

$x_2 = \varphi(x_1) = \frac{1}{2} \left[\frac{109}{100} x_1 + \frac{11}{100} \right]$
$=\frac{1}{2}\left[109_{10}3.7782+1\right]$
$x_2 = 3.7886$ $x_3 = 9(x_2) = \frac{1}{2} [109, x_2 + 7]$
=5.7892
$x_{4} = \varphi(x_{3}) = \frac{1}{2} \left[\frac{109}{10} \times \frac{3}{3} + 7 \right]$ $= \frac{1}{2} \left[\frac{109}{10} \times \frac{3}{3} + 7 \right]$
x4=3.7893 1 (109 x4+7)
2 2 1 3/6
(1.2 1) 25 = 3.7893 The graywied root is 3.7893
H. Wy find the negative groot 9 the egn $x^3-2x+5=0$
2.7783

Glaus Jordan Method

$$2x - y + 6x = 28$$
 $x + 7y - 3x = -82$
 $5x - 2y + 3x = 18$

8010

 A, B = $\begin{bmatrix} 2 & 7 & -3 & 18 \\ -2 & 3 & 18 \end{bmatrix}$
 $\begin{bmatrix} 1 & 7 & -3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & 7 & -3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & 3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & 3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & 3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & 3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & 3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & 3 & 18 \\ -25 & 35 \end{bmatrix}$
 $\begin{bmatrix} 1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$
 $\begin{bmatrix} -2 & 1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1 \\ -25 & -1 & -1 & -1 & -1$

$$\begin{cases}
\frac{5}{13} & 0 & 1 \\
0 & 0 & 1
\end{cases}$$

$$\begin{cases}
\frac{44}{13} & 7 \\
R_1 & -\frac{5}{12} \\
R_2 & -\frac{5}{12} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_2 & -\frac{5}{13} \\
R_3 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_4 & -\frac{5}{13} \\
R_5 & -\frac{5}{13} \\
R_7 & -\frac$$

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)

$$[A,B] = \begin{cases} 1 & 3 & 3 & 16 \\ 1 & 4 & 3 & 18 \\ 1 & 3 & 4 & 19 \end{cases}$$

$$= \begin{cases} 1 & 3 & 3 & 16 \\ 1 & 3 & 4 & 19 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 &$$

3 Solve
$$10x + y + z = 12$$
 $2x + 10y + z = 13$
 $2x + y + 5z = 7$

30 In $A, B, J = \begin{bmatrix} 10 & 1 & 1 & 1/2 \\ 2 & 1 & 1/2 & 1/3 \\ 1 & 1 & 5 & 7 \end{bmatrix}$

$$= \begin{bmatrix} 1 & 1 & 1 & 1/2 \\ 1 & 1 & 5 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1/0 & 1/2 & 1/2 \\ 1/0 & 1/2 & 1/2 & 1/2 \\ 1/0 & 1/2 & 1/2 & 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1/0 & 1/2 & 1/2 & 1/2 \\ 1/0 & 1/2 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 & 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1/0 & 1/2 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 & 1/2 & 1$$

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)

Inverse
$$q$$
 a Matrix $\frac{1}{3}$ $\frac{1}{3}$ $\frac{3}{3}$ $\frac{1}{3}$ $\frac{3}{3}$ $\frac{3$

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)

Gold the inverse of the Matrix

$$\begin{pmatrix}
3 & -1 & -5 \\
-15 & 6 & -5
\end{pmatrix}$$
wing crawn Jordan

Method.

$$A = \begin{bmatrix}
3 & -1 & -5 \\
-1 & 4
\end{bmatrix}$$

$$A = \begin{bmatrix}
3 & -1 & -5 \\
-1 & 4
\end{bmatrix}$$

$$A = \begin{bmatrix}
3 & -1 & -5 \\
-1 & 4
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & -1 & 0 \\
-1 & 3 & 1 & 0
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 0 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 0 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-1 & 3 & 1 & 3
\end{bmatrix}$$

$$A = \begin{bmatrix}
1 & -1 & 3 & 1 & 3 \\
-$$

Sri vidya college of Engineering and Technology , virudhunagar

Sri vidya college of Engineering	and Technology ,	virudhunagar
Sri vidya college of Engineering	and Technology,	virudhunagar

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)

Graum Jacobi Method Solve the following equal by Graum Jacobi Method $20x + y - 2z = 17$ $3x + 30y - z = -18$ $2x - 3y + 20z = 25$ $x = \frac{17 - y + 2z}{20} \qquad y = \frac{-18 + x - 3x}{20} \qquad z = \frac{25 - 2x + 3y}{20}$ $x_0 = 0 \qquad y_0 = 0 \qquad z_0 = 0$ $x_1 = 0.85 \qquad y_1 = -0.9 \qquad z_1 = 1.25$ $x_2 = 1.02 \qquad y_3 = -1.0015 \qquad z_3 = 1.003$ $x_3 = 1.0013 \qquad y_3 = -1.0015 \qquad z_3 = 1.0033$ $x_4 = 1.0014 \qquad y_4 = -1.0001 \qquad z_5 = 0.9999$ $x_5 = 0.9999 \qquad y_5 = -1.0001 \qquad z_6 = 1$ $x_1 = 1 \qquad y_1 = 1 \qquad z_7 = 1$ Solve $28x + 4y - z = 32$ $x + 3y + 10z = 34$ $2x + 17y + 4x = 35$		1			
Solve the following eqns by Gauss Talebi's $20x + y - 2z = 17$ $3x + 30y - z = -18$ $2x - 3y + 20z = 25$ $ x = \frac{17 - y + 2z}{20} y = \frac{-18 + x - 3x}{20} z = \frac{25 - 2x + 3y}{20} $ $ x_0 = 0 y_0 = 0 z_0 = 0 $ $ x_1 = 0.85 y_1 = -0.9 z_1 = 1.25 $ $ x_2 = 1.02 y_2 = -0.965 z_2 = 1.03 $ $ x_3 = 1.0013 y_3 = -1.0015 z_3 = 1.0033 = 20 $ $ x_4 = 0.0014 y_4 = -0.0001 z_5 = 0.9996 $ $ x_5 = 0.9999 y_5 = -1.0001 z_5 = 0.9999 $ $ x_6 = 1 y_7 = -1 z_7 = 1 $ $ x_7 = 1 y_7 = -1 z_7 = 1 $ Solve $28x + 4y - z = 32$ $2x + 3y + 10z = 24y$	A.M				
Solve the following eqns by Gauss Talebi's $20x + y - 2z = 17$ $3x + 30y - z = -18$ $2x - 3y + 20z = 25$ $ x = \frac{17 - y + 2z}{20} y = \frac{-18 + x - 3x}{20} z = \frac{25 - 2x + 3y}{20} $ $ x_0 = 0 y_0 = 0 z_0 = 0 $ $ x_1 = 0.85 y_1 = -0.9 z_1 = 1.25 $ $ x_2 = 1.02 y_2 = -0.965 z_2 = 1.03 $ $ x_3 = 1.0013 y_3 = -1.0015 z_3 = 1.0033 = 20 $ $ x_4 = 0.0014 y_4 = -0.0001 z_5 = 0.9996 $ $ x_5 = 0.9999 y_5 = -1.0001 z_5 = 0.9999 $ $ x_6 = 1 y_7 = -1 z_7 = 1 $ $ x_7 = 1 y_7 = -1 z_7 = 1 $ Solve $28x + 4y - z = 32$ $2x + 3y + 10z = 24y$	P2-1	Gaus	Jacobi	Method	
$20x + y - 2z = 17$ $3x + 30y - z = -18$ $2x - 3y + 20z = 25$ $x = \frac{17 - y + 2z}{20} \qquad y = \frac{-18 + z - 3x}{20} \qquad z = \frac{25 - 2x + 3y}{20}$ $x_0 = 0 \qquad y_0 = 0 \qquad z_0 = 0$ $x_1 = 0.85 \qquad y_1 = -0.9 \qquad z_2 = 1.25$ $x_2 = 1.02 \qquad y_3 = -1.0015 \qquad z_3 = 1.0033 \qquad z_4 = 0.9996$ $x_4 = 1.0004 \qquad y_4 = -1.0001 \qquad z_5 = 0.9999$ $x_5 = 0.9999 \qquad y_5 = -1.0001 \qquad z_6 = 1$ $x_7 = 1 \qquad y_7 = -1 \qquad z_7 = 1$ $\therefore x = 1, y = -1, z = 1$ $\therefore x = 1, y = -1, z = 1$ $\therefore x = 1, y = -1, z = 1$ $\therefore x = 1, y = -1, z = 1$	- 1	D Solve the following egns by Graus Jacobi			
$3x + 30y - 7 = -18$ $2x - 3y + 30z = 25$ $x = \frac{17 - y + 3z}{20} \qquad y = \frac{-18 + x - 3x}{20} \qquad z = \frac{25 - 2x + 3y}{20}$ $x_0 = 0 \qquad y_0 = 0 \qquad z_0 = 0$ $x_1 = 0.85 \qquad y_1 = -0.9 \qquad z_1 = 1.25$ $x_2 = 1.02 \qquad y_2 = -0.965 \qquad z_2 = 1.03$ $x_3 = 1.0013 \qquad y_3 = -1.0015 \qquad z_3 = 1.0033 \qquad z_4 = 0.9996$ $x_4 = 1.0004 \qquad y_4 = -1.0001 \qquad z_5 = 0.9999$ $x_5 = 0.9999 \qquad y_5 = -1.0001 \qquad z_6 = 1$ $x_1 = 1 \qquad y_2 = 1 \qquad z_7 = 1$ $x_2 = 1 \qquad y_7 = -1 \qquad x_7 = 1$ $x_1 = 1 \qquad y_7 = -1 \qquad x_7 = 1$ $x_2 = 1 \qquad y_7 = -1 \qquad x_7 = 1$ $x_1 = 1 \qquad y_7 = -1 \qquad x_7 = 1$			10x +4 -	-2Z = 17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1677		2x +205	1-7=-18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123 1	x = 17-	y + 21 20	$y = \frac{-18+x-3x}{20}$	Z = 25 - 2x + 3y 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1858	x. = 0	The state of	y ₀ = 0	Zo = 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	749	x = 0	85	4, =-0.9	Z, = 1.25
	00,41			No = -0.965	Z2=1.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	894	177		42 = -1.0015	73 = 1.0033 **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I Van	0			Z4 = 0.9996
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Z5-=0.9999
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	191				Z6 = 1
(2) Solve $28x + 4y - z = 32$ x + 3y + 10z = 24					Z7 = 1
② Solve $28x + 4y - z = 32$ x + 3y + 10z = 24	2311		7. 20	=1, 4=-1, 7	-)
② Solve $28x + 4y - z = 32$ x + 3y + 10z = 24					
x + 3y + 10z = 24	(2)	Solve			30.28 E)
2x +17y +4x=35	6	1,5-11,00			
			2x+	174 +4x=35	
	× 1	400			

	$\chi = \frac{32 - 4y + z}{28}$ $y = \frac{35 - 4x - 2x}{14}$ $z = \frac{24 - x - 3y}{10}$
	$y_0 = 0$ $y_0 = 0$ $z_0 = 0$ $x_1 = 1.1429$ $y_1 = 2.0588$ $z_1 = 2.4$
	$y_2 = 0.9345$ $y_2 = 1.3597$ $Z_2 = 1.6681$
TEANS.	$M_3 = 1.0082$ $Y_3 = 1.5564$ $Z_3 = 1.898$ $Y_4 = 0.9883$ $Y_4 = 1.4935$ $Z_4 = 1.832 = 3$
50	$x_{5} = 0.9949$ $y_{5} = 1.5058$ $z_{6} = 1.847$
2 200	$x_7 = 0.9937$ $y_7 = 1.5074$ $z_8 = 1.8484$ " $x_8 = 0.9936$ $y_8 = 1.5069$ $z_8 = 1.8484$ "
586	$y_{10} = 0.9936$ $y_{10} = 1.5070$ $y_{10} = 1.8486$ $y_{10} = 0.9936$ $y_{10} = 1.5070$ $y_{10} = 1.8485$ $y_{10} = 0.9936$ $y_{10} = 1.5070$ $y_{10} = 1.8485$
	11 = 0 1/136 3/1
	The Soln is $x = 0.9936$ $y = 1.5076$ $z = 1.8485$
3	801VE 27× +64-Z=85 x+y+54Z=110
	6x + 15y + 2I = 72

Sri vidya college of Engineering and Technology , virudhunagar

	•	
$\chi = \frac{85 - 64 + 7}{27}$	$y = \frac{72 - 6x - 2z}{15}$	Z= 110-X-y-
$n_0 = 0$	y0=0 y,=4.8	$Z_0 = 0$ $Z_1 = 2.037$
$\chi_1 = 3.148$ $\chi_2 = 2.157$	y2=3.269	$z_2 = 1.890$ $z_3 = 1.937$
	$y_3 = 3.685$ $y_4 = 3.545$	Z4=1.923
x5= 2.439	y_=3.583 y_ = 3.570	Z6=1.927 Z6=1.926
$n_6 = 2 \cdot 423$ $n_7 = 2 \cdot 426$	7 = 3.574 Y8 = 3.573	Zy=1.926 Zg=1.926
xg = 2. 425	- all Pagant	1 1/16
X=2.425	y = 3.573	Z=1.926_
138		
100		

0	Graus Seidal Iteration Method Solve $20x + y - 2z = 17$ $3x + 20y - z = -18$ $2x - 3y + 20z = 25$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	Solve $4x + 2y + z = 14$ x + 5y - z = 10 x + y + 8z = 20

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)

	$\chi = \frac{85 - 6y + Z}{27}$	$y = \frac{72 - 6x - 2z}{15}$ $z = \frac{110 - x - 54}{54}$	y
PCP-1	N3 = 2.426	$y_0 = 0$ $y_1 = 3.541$ $y_2 = 3.572$ $y_3 = 3.573$ $y_4 = 3.573$ $y_4 = 3.573$ $y_4 = 3.573$ $y_5 = 0$ $y_6 = 0$ $y_1 = 0$ $y_1 = 0$ $y_1 = 0$ $y_2 = 0$ $y_3 = 0$ $y_4 = 0$	6
4	x = 2.42 $y = 3.57$ $z = 1.924$	3 6	
		T AL & DATE D	

Sri vidya college of Engineering and Technology , virudhunagar

$\mathcal{H} = \frac{14 - 2y - z}{4}$	$y = \frac{10 - \chi + Z}{5}$	z = 20 - x - y		
$x_{1} = 3.5$ $x_{2} = 2.375$ $x_{3} = 2.056$ $x_{4} = 2.002$ $x_{5} = 2.002$ $x_{7} = 2$ $x_{7} = 2$	$y_0 = 0$ $y_1 = 1.3$ $y_2 = 1.905$ $y_3 = 1.982$ $y_4 = 1.997$ $y_5 = 1.999$ $y_6 = 2$ $y_7 = 2$ $y_8 = 2$	$Z_0 = 0$ $Z_1 = 1.9$ $Z_2 = 1.965$ $Z_3 = 1.995$ $Z_4 = 1.999$ $Z_5 = 2$ $Z_6 = 2$ $Z_7 = 2$ $Z_8 = 2$		
3 Solve 27x + x + y	Solve $27x + 6y - z = 85$ x + y + 54z = 110 6x + 15y + 2z = 72			

		_			
C 12 1 1 1 1 1 1 1 1 1 1 1 1 1	callaga	of Engline	aarina and	Tachaalaat	, virudhunagar
Sti viuva	COHESE	OI LUBIUE	2611118 91110	TECHNOLOSY.	. viruanunagar
. ,	00000	··			,

A
$$X_{4} = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 0.0450 \\ 0.0685 \end{pmatrix} = \begin{pmatrix} 25.1821 \\ 1.1855 \\ 0.0685 \end{pmatrix} = 25.1826 X_{5}$$

A $X_{5} = \begin{pmatrix} 25.1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 0.0451 \\ 0.0685 \end{pmatrix} = \begin{pmatrix} 25.1821 \\ 1.1353 \\ 1.7240 \end{pmatrix}$

$$= 25.1821 \begin{pmatrix} 0.0451 \\ 0.0685 \end{pmatrix} = 35.1821 X_{5}.$$

Dominant eigen Value $\lambda = 25.1821 X_{5}.$

Overesponding eigen Vector is $\begin{pmatrix} 0.0451 \\ 0.0685 \end{pmatrix}$

Determine by Power needs the Genespending largest eigen Value and the Genespending eigen Vector of the Habrin $\begin{cases} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{cases}$

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)

$$A \times_{q} = \begin{pmatrix} 0.4172 \\ 5-0869 \\ 11-7473 \end{pmatrix} = 11.7475 \begin{pmatrix} 0.02533 \\ 0.4330 \end{pmatrix} = 11.7475 \times_{q}$$

$$A \times_{q} = \begin{pmatrix} 0.3345 \\ 4.9734 \\ 11.6965 \end{pmatrix} = 11.6965 \begin{pmatrix} 0.0260 \\ 0.425 \\ 0.4229 \end{pmatrix} = 11.6718 \begin{pmatrix} 0.0260 \\ 0.4229 \\ 0.4229 \end{pmatrix} = 11.6718 \begin{pmatrix} 0.0260 \\ 0.4229 \\ 0.4229 \\ 1.6656 \end{pmatrix} = 11.66718 \begin{pmatrix} 0.0253 \\ 0.4229 \\ 0.4221 \end{pmatrix} = 11.6656 \times_{11}$$

$$A \times_{11} = \begin{pmatrix} 0.2946 \\ 4.928 \\ 11.6631 \end{pmatrix} = 11.6631 \begin{pmatrix} 0.0253 \\ 0.4221 \\ 1.6631 \end{pmatrix} = 11.6631 \times_{12}$$

$$A \times_{12} = \begin{pmatrix} 0.2967 \\ 4.9128 \\ 11.6622 \end{pmatrix} = 11.6622 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6623 \times_{12}$$

$$A \times_{13} = \begin{pmatrix} 0.2907 \\ 4.9128 \\ 11.6623 \end{pmatrix} = 11.6619 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6623 \times_{14}$$

$$A \times_{15} = \begin{pmatrix} 0.29 \\ 4.9181 \\ 11.6619 \end{pmatrix} = 11.6619 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6619 \times_{14}$$

$$A \times_{15} = \begin{pmatrix} 0.29 \\ 4.9181 \\ 11.6619 \end{pmatrix} = 11.6619 \begin{pmatrix} 0.0249 \\ 0.4217 \end{pmatrix} = 11.6619 \times_{14}$$

The dominant eigen value is

11.6619

The corresponding eigen Vector is

$$\begin{pmatrix}
0.0249\\
0.4214
\end{pmatrix}$$
Find the dominant eigen value and the corresponding eigen vector 9 $A = \begin{pmatrix} 1 & 6 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

Solo $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

$$A \times _{1} = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = 1 \cdot X_{2}$$

$$A \times _{2} = \begin{pmatrix} 7 \\ 3 \\ 0 \end{pmatrix} = 7 \begin{pmatrix} 0.4286 \\ 0 \end{pmatrix} = 7 \cdot X_{3}$$

$$A \times _{3} = \begin{pmatrix} 3.5714 \\ 1.8572 \end{pmatrix} = 3.5714 \begin{pmatrix} 0.52 \\ 0.52 \end{pmatrix} = 3.5714 \times _{4}$$

$$A \times _{4} = \begin{pmatrix} 4.12 \\ 2.04 \\ 0 \end{pmatrix} = 4.12 \begin{pmatrix} 0.4951 \\ 0.52 \end{pmatrix} = 4.12 \times _{5}$$

$$A \times_{5} = \begin{pmatrix} +3.9706 \\ 1.9902 \end{pmatrix} = 3.9706 \begin{pmatrix} 0.5012 \\ 0.5012 \end{pmatrix} = 3.9706 \times_{5}$$

$$A \times_{6} = \begin{pmatrix} 4.0072 \\ 2.0094 \end{pmatrix} = A.0072 \begin{pmatrix} 0.4991 \\ 0.5000 \end{pmatrix} = 4.0072 \times_{5}$$

$$A \times_{1} = \begin{pmatrix} 3.9982 \\ 1.9994 \\ 0 \end{pmatrix} = 3.9982 \begin{pmatrix} 0.5000 \\ 0 \end{pmatrix} = 3.9987 \times_{5}$$

$$A \times_{9} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} = 4 \times_{9}$$

$$A \times_{9} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$Do Minant eigen Value is \lambda = 4$$

$$Griesponding eigen Vector is \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

	Eigen Value of a Matrix by Jacobi Method for Symmetric Matrix Method for Symmetric Matrix Let P = (COO - Sin O) Sin O COO)
	$O = \frac{1}{2} \tan^{-1} \left(\frac{2 a_{ij}}{a_{ii} - a_{ji}} \right)$
	D=PTAP
0	Apply Jacobi process to evaluate. The eigen values and eigen vectors The eigen Matrix (5 0 1) The Matrix (5 0 1) The Matrix (5 0 1) The Matrix (5 0 5)
	Soln A = (500)
	The largest non diagonal element is $a_{13} = a_{31} = 1$ $a_{11} = 5 , a_{33} = 5$

Sri vidya college of Engineering and Technology , virudhunagar	

course material (notes)

Ist transpormation

$$D = P^{T}AP$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
The eigen values are $6, -2, 4$
corresponding eigen vectors are
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$Find all the eigen values and eigen vectors as the Matrix
$$\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \end{bmatrix} \text{ using Taubi Method.}$$$$

Here the largest non diagonal element
$$A = \begin{cases} \sqrt{2} & \sqrt{2} \\ 2 & \sqrt{2} \end{cases}$$
Here the largest non diagonal element
$$a_{11} = a_{31} = 2$$

$$a_{11} = 1, a_{33} = 1$$

$$a_{11} = 1, a_{33} = 1$$

$$a_{11} = 1, a_{33} = 1$$

$$a_{11} = 0$$

$$a_{12} = 0$$

$$a_{13} = 0$$

$$a_{14} = 0$$

$$a_{14} = 0$$

$$a_{15} = 0$$

$$a_{17} = 0$$

$$a_{17$$

$$B_{1} = S_{1}^{-1}AS_{1}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$= \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_{12} = a_{21} = 2$$

$$a_{11} = 3 \quad a_{22} = 3$$

$$S_{2} = \begin{pmatrix} 630 & -8in0 & 0 \\ 8in0 & 60 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\tan 20 = \frac{2a_{12}}{a_{11}-2a_{22}} = \frac{3\times 2}{3-3} = 8$$

$$20 = \tan^{2} 8$$

$$20 = T_{12}$$

$$0 = T_{13}$$

$$B_{2} = S_{1}^{T}B_{1}S_{2}$$

$$= \begin{pmatrix} \frac{1}{12} & \frac{1}{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B_{2} = S_{1}^{T}B_{1}S_{2}$$

$$= \begin{pmatrix} \frac{1}{12} & \frac{1}{12} & 0 \\ \frac{1}{12} & \frac{1}{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{12} & \frac{1}{12} & 0 \\ \frac{1}{12} & \frac{1}{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \frac{1}{2}\begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{12} & \frac{1}{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\therefore A \text{ is oreduced to the eigen Values } %$$

$$Hence \text{ the eigen Values } %$$

$$A \text{ is } 5, 1, -1$$

$$S = S_1 S_2 = \begin{pmatrix} \frac{1}{12} & 0 & \frac{1}{12} & 0 \\ 0 & \frac{1}{12} & 0 & \frac{1}{12} & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & 0 & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & 0 & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} \\ 0 & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & \frac{1}$$

Sri vidya college of Engineering and Technology , virudhunagar	course material (notes)