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UNIT – IV 
 

BOUNDARY LAYER AND FLOW THROUGH PIPES 
 

Definition of boundary layer – Thickness and classification – Displacement 

and momentum thickness – Development of laminar and turbulent flows in circular 

pipes – Major and minor losses of flow in pipes – Pipes in series and in parallel – Pipe 

network 

General Characteristics of External Flow 

External flows are defined as the flows immersed in an unbounded fluid. A body 

immersed in a fluid experiences a resultant force due to the interaction between the 

body and fluid surroundings. In some cases, the body moves in stationary fluid 

medium (e.g. motion of an airplane) while in some instances, the fluid passes over a 

stationary object (e.g. motion of air over a model in a wind tunnel). In any case, one 

can fix the coordinate system in the body and treat the situation as the flow past a 

stationary body at a uniform velocity U  , known as upstream/free-stream velocity. 

However, there are unusual instances where the flow is not uniform. Even, the flow in 

the vicinity of the object can be unsteady in the case of a steady, uniform upstream 

flow. For instances, when wind blows over a tall building, different velocities are felt 

at top and bottom part of the building. But, the unsteadiness and non-uniformity are of 

minor importance rather the flow characteristic on the surface of the body is more 

important. The shape of the body (e.g. sharp-tip, blunt or streamline) affects structure 

of an external flow. For analysis point of view, the bodies are often classified as, two- 

dimensional objects (infinitely long and constant cross-section), axi-symmetric bodies 

and three-dimensional objects. 

There are a number of interesting phenomena that occur in an external 

viscous flow past an object. For a given shape of the object, the characteristics of the 

flow depend very strongly on carious parameters such as size, orientation, speed and 

fluid  properties.  The most  important  dimensionless  parameter for a typical external 

incompressible flow is the Reynolds number 
 

Re  
 Ul  

, which represents the ratio 
  
 

of inertial effects to the viscous effects. In the absence of viscous effects    0 , the 

Reynolds number is infinite. In other case, when there are no inertia effects, the 

Reynolds number is zero. However, the nature of flow pattern in an actual scenario 

depends  strongly  on  Reynolds  number  and  it  falls  in  these  two  extremes  either 

Re  1 or Re  1 .  The  typical  external  flows  with  air/water  are       associated 
 

moderately sized  objects  with  certain  characteristics  length  0.01m  l  10m and 
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free stream velocity  s  U  100 s that  results  Reynolds  number  in the 
 

range 10  Re  10
9 
. So, as a rule of thumb, the flows with  Re 


1 , are dominated by 

 

viscous effects and inertia effects become predominant when Re  100 . Hence, the 

most familiar external flows are dominated by inertia. So, the objective of this section 

is to quantify the behavior of viscous, incompressible fluids in external flow. 

Let us discuss few important features in an external flow past an airfoil 

(Fig. 5.7.1) where the flow is dominated by inertial effects. Some of the important 

features are highlighted below; 

- The free stream flow divides at the stagnation point. 

- The fluid at the body takes the velocity of the body (no-slip condition). 

- A boundary layer is formed at the upper and lower surface of the airfoil. 

- The flow in the boundary layer is initially laminar and the transition to 

turbulence takes place at downstream of the stagnation point, depending on the 

free stream conditions. 

- The turbulent boundary layer grows more rapidly than the laminar layer, thus 

thickening the boundary layer on the body surface. So, the flow experiences a 

thicker body compared to original one. 

- In the region of increasing pressure (adverse pressure gradient), the flow 

separation may occur. The fluid inside the boundary layer forms a viscous 

wake behind the separated points. 

 

Fig. 5.7.1: Important features in an external flow. 
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Boundary Layer Characteristics 

The concept of boundary layer was first introduced by a German scientist, Ludwig 

Prandtl, in the year 1904. Although, the complete descriptions of motion of a viscous 

fluid were known through Navier-Stokes equations, the mathematical difficulties in 

solving these equations prohibited the theoretical analysis of viscous flow. Prandtl 

suggested that the viscous flows can be analyzed by dividing the flow into two 

regions; one close to the solid boundaries and other covering the rest of the flow. 

Boundary layer is the regions close to the solid boundary where the effects of  

viscosity are experienced by the flow. In the regions outside the boundary layer, the 

effect of viscosity is negligible and the fluid is treated as inviscid. So, the boundary 

layer is a buffer region between the wall below and the inviscid free-stream above. 

This approach allows the complete solution of viscous fluid flows which would have 

been impossible through Navier-Stokes equation. The qualitative picture of the 

boundary-layer growth over a flat plate is shown in Fig. 5.7.2. 

 

Fig. 5.7.2: Representation of boundary layer on a flat plate. 
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A laminar boundary layer is initiated at the leading edge of the plate for a short 

distance and extends to downstream. The transition occurs over a region, after certain 

length in the downstream followed by fully turbulent boundary layers. For common 

calculation purposes, the transition is usually considered to occur at a distance where 

the Reynolds number is about 500,000. With air at standard conditions, moving at a 

velocity of 30m/s, the transition is expected to occur at a distance of about 250mm. A 

typical boundary layer flow is characterized by certain parameters as given below; 

Boundary layer thickness   : It is known that no-slip conditions have to be satisfied 

at the solid surface: the fluid must attain the zero velocity at the wall. Subsequently, 

above the wall, the effect of viscosity tends to reduce and the fluid within this layer 

will try to approach the free stream velocity. Thus, there is a velocity gradient that 

develops within the fluid layers inside the small regions near to solid surface. The 

boundary layer thickness is defined as the distance from the surface to a point where 

the velocity is reaches 99% of the free stream velocity. Thus, the velocity profile 

merges smoothly and asymptotically into the free stream as shown in Fig. 5.7.3(a). 

 

Fig. 5.7.3: (a) Boundary layer thickness; (b) Free stream flow (no viscosity); 

(c) Concepts of displacement thickness. 
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   

 

 

Displacement thickness    : The effect of viscosity in the boundary layer is to retard 

the flow. So, the mass flow rate adjacent to the solid surface is less than the mass flow 

rate that would pass through the same region in the absence of boundary layer. In the 

absence of viscous forces, the velocity in the vicinity of sold surface would be U as 

shown in Fig. 5.7.3(b). The decrease in the mass flow rate due to the influence of 

viscous forces is 



  U  u  bdy , where b is the width of the surface in the direction 
0 

perpendicular to the flow. So, the displacement thickness is the distance by which the 

solid boundary would displace in a frictionless flow (Fig. 5.7.3-b) to give rise to same 

mass flow rate deficit as exists in the boundary layer (Fig. 5.7.3-c). The mass flow  

rate deficiency by displacing the solid boundary by   
will be  U  b . In an 

incompressible flow, equating these two terms, the expression for    
is obtained. 



 U  b    U  u  bdy 
0 

 

 
(5.7.1) 

    
   


1 

u  
dy    


1 

u   
dy 

   

0  U  0  U 

Momentum thickness    : The flow retardation in the boundary layer also results the 

reduction in momentum flux as compared to the inviscid flow. The momentum 

thickness is defined as the thickness of a layer of fluid with velocity U , for which the 

momentum flux is equal to the deficit of momentum flux through the boundary layer. 

So, the expression for    
in an incompressible flow can be written as follow; 



 U 2     u U  u  dy 
0 

 




(5.7.2) 

u  u  u  u 
    

  1 dy   1 dy 

0 U  U  0 U  U 

The displacement/momentum thickness has the following physical implications; 

- The displacement thickness represents the amount of distance that thickness of 

the body must be increased so that the fictitious uniform inviscid flow has the 

same mass flow rate properties as the actual flow. 

- It indicates the outward displacement of the streamlines caused by the viscous 

effects on the plate. 
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- The flow conditions in the boundary layer can be simulated by adding the 

displacement thickness to the actual wall thickness and thus treating the flow 

over a thickened body as in the case of  inviscid flow. 

- Both   
and      

are the integral thicknesses and the integrant vanishes in   the 
 

free stream. So, it is relatively easier to evaluate   
and      

as compared to  . 
 

The boundary layer concept is based on the fact that the boundary layer is thin. 

For a flat plate, the flow at any location x along the plate, the boundary layer relations 

 



x;     x and     x are  true  except  for  the  leading  edge.  The   velocity 

 

profile merges into the local free stream velocity asymptotically. The pressure 

variation across the boundary layer is negligible i.e. same free stream pressure is 

impressed on the boundary layer. Considering these aspects, an approximate analysis 

can be made with the following assumptions within the boundary layer. 

At  y     u  U 

At  y     y   0 (5.7.3) 

Within the boundary layer, v   U 
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Module 5 : Lecture 8 

VISCOUS INCOMPRESSIBLE FLOW 

(External Flow – Part II) 

 
Boundary Layer Equations 

There are two general flow situations in which the viscous terms in the Navier-Stokes 

equations can be neglected. The first one refers to high Reynolds number flow region 

where the net viscous forces are negligible compared to inertial and/or  pressure 

forces, thus known as inviscid flow region. In the other cases, there is no vorticity 

(irrotational flow) in the flow field and they are described through potential flow 

theory. In either case, the removal of viscous terms in the Navier-Stokes equation 

yields Euler equation. When there is a viscous flow over a stationary solid wall, then  

it must attain zero velocity at the wall leading to non-zero viscous stress. The Euler’s 

equation has the inability to specify no-slip condition at the wall that leads to un- 

realistic physical situations. The gap between these two equations is overcome  

through boundary layer approximation developed by Ludwig Prandtl (1875-1953). 

The idea is to divide the flow into two regions: outer inviscid/irrotational flow region 

and boundary layer region. It is a very thin inner region near to the solid wall where 

the vorticity/irrotationality cannot be ignored. The flow field solution of the inner 

region is obtained through boundary layer equations and it has certain assumptions as 

given below; 

 The thickness of the boundary layer    is very small. For a given fluid   and 

plate, if the Reynolds number is high, then at any given location  x on the 

plate, the boundary layer becomes thinner as shown in Fig. 5.8.1(a). 

 Within the boundary layer (Fig. 5.8.1-b), the component of velocity normal  to 

the wall is very small as compared to tangential velocity v   u  . 
 

 There is no change in pressure across the boundary layer i.e. pressure varies 

only in the x-direction. 
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Fig. 5.8.1: Boundary layer representation: (a) Thickness of boundary layer; (b) Velocity components within the boundary 

layer; (c) Coordinate system used for analysis within the boundary layer. 

 

After having some physical insight into the boundary layer flow, let us generate the 

boundary layer equations for a steady, laminar and two-dimensional flow in x-y plane 

as shown in Fig. 5.8.1(c). This methodology can be extended to axi-symmetric/three- 

dimensional boundary layer with any coordinate system. Within the boundary-layer as 

shown in Fig. 5.8.1(c), a coordinate system is adopted in which x is parallel to the 

wall everywhere and y is the direction normal to the wall. The   location x  0 refers 

to stagnation point on the body where the free stream flow comes to rest. Now, take 

certain length scale   L for  distances in the  stream-wise direction   x so  that the 
 

derivatives of velocity and pressure can be obtained. Within the boundary layer, the 

choice of this length scale  L is too large compared to the boundary layer  thickness 
 

  . So the scale L is not a proper choice for y-direction. Moreover, it is difficult to 

obtain the derivatives with respect to y. So, it is more appropriate to use a length scale 

of      for  the  direction  normal  to  the  stream-wise  direction.  The   characteristics 

velocity U  U  x is the velocity parallel to the wall at a location just above the 
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   

   

2 2 

2 2 

 
 

boundary layer and p is the free stream pressure. Now, let us perform order of 

magnitude analysis within the boundary layer; 

u  U ;  p  p     U 
2 
; 

  
 

1 
; 

  
  

1
 (5.8.1) 

 
x L y 

Now, apply Eq. (5.8.1) in continuity equation to obtain order of magnitude in y- 

component of velocity. 

u 
 
v 

 0
 
 

U  
 

v 
U

 v  (5.8.2) 
x y L  L 

Consider the momentum equation in the x and y directions; 
 

u u 1  dP   
2
u 

2
u 

x  momentum : u  v 
x y   

 
 

dx 
   

x
2 
 y

2 
 

(5.8.3) 
v v 1  P   

2
v 

2
v 

y  momentum : u  v 
x y   

 
 
y 

   
x

2 
 y

2 





Here,  

 
 
  is the kinematic viscosity. Let us define non-dimensional variables 

  
 

within the boundary layer as follows: 

x
  
  

x 
; y

  
  

y 
; u

  
  

u 
; v

  
 

vL 
; 
 
p
 
 p  p


(5.8.4) 

L  U U U 
2

 

 

First, apply Eq. (5.8.4) in y-momentum equation, multiply each term by L
2   U 

2 


and after simplification, one can obtain the non-dimensional form of y – momentum 

equation. 

v
 

v
 

 L   p

     

2
v

       L  

2
v



u
 

 v
 

  
      

x

 y


    y


  UL  x

2
  UL    y2 

(5.8.5) 
v

 
v

 
 L   p


   1   

2
v

   1   L   

2
v



or, u
 

 v
 

  
      

x

 y


    y


  Re  x

2
  Re    y2 

For boundary layer flows, the Reynolds number is considered as very high which 

means the second and third terms in the RHS of Eq. (5.8.5) can be neglected. Further, 

the pressure gradient term is much higher than the convective terms in the LHS of Eq. 

(5.8.5), because  L 


 . So, the non-dimensional y-momentum equation reduces to, 

p
 

p 
 0   0 

 
(5.8.6) 

y
 

y 
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It means the pressure across the boundary layer (y-direction) is nearly constant i.e. 

negligible change in pressure in the direction normal to the wall (Fig. 5.8.2-a). This 

leads to the fact that the streamlines in the thin boundary layer region have negligible 

curvature when observed at the scale of  . However, the pressure may vary along the 

wall (x-direction). Thus, y-momentum equation analysis suggests the fact that  

pressure across the boundary layer is same as that of inviscid outer flow region. 

Hence, one can apply Bernoulli equation to the outer flow region and obtain the 

pressure variation along x-direction where both 

5.8.2-b). 

p and U are functions of x only  (Fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.8.2: Variation of pressure within the boundary layer: (a) Normal to the wall; 

(b) Along the wall. 

 

p 
 

1 
U 

2  
 constant 

  
1  dp 

 U 
dU 

 
(5.8.7) 

 2  dx dx 

Next, apply Eq. (5.8.4) in x – momentum equation, multiply each term by  L U 
2  

and after simplification, one can obtain the non-dimensional form of x– momentum 

equation. 

u
 

u
 

dp
 

    
2
u

       L  

2
u



u
 

 v
 

    
   

x

 y


 dx


  UL  x

2
  UL    y2 

(5.8.8) 
u

 
u

 
p

 
  1   

2
u

   1   L   

2
u



or, u
 

 v
 

   
   

x

 y


 x


  Re  x

2
  Re    y2 

It may be observed that all the terms in the LHS and first term in the RHS of Eq. 

(5.8.8) are of the order unity. The second term of RHS can be neglected because the 

Reynolds number is considered as very high. The last term of Eq. (5.8.8) is equivalent 

to inertia term and thus it has to be the order of one. 
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   L  
2

 U 
2 

U  1 
     1         (5.8.9) 

 UL     L  2 
L Re 

L 

Eq. (5.8.9) clearly shows that the convective flux terms are of same order of 

magnitudes of viscous diffusive terms. Now, neglecting the necessary terms and with 

suitable approximations, the equations for a steady, incompressible and laminar 

boundary flow can be obtained from Eqs (5.8.2 & 5.8.3). They are written in terms of 

physical variables in x-y plane as follows; 

Continuity : u 
 
v 

 0
 

x 

x  momentum : u 

y 

u 
 v

 
x 

u 
 U 

dU 



y dx 

 


2
u 

 
 

y
2

 

 
 

(5.8.10) 

y  momentum : 
p 

 0 
y 

Solution Procedure for Boundary Layer 

Mathematically, a full Navier-Stokes equation is elliptic in space which means that  

the boundary conditions are required in the entire flow domain and the information is 

passed in all directions, both upstream and downstream. However, with necessary 

boundary layer approximations, the x – momentum equation is parabolic in nature 

which means the boundary conditions are required only three sides of flow domain 

(Fig. 5.8.3-a). So, the stepwise procedure is outlined here. 

- Solve  the  outer  flow  with  inviscid/irrotational  assumptions  using   Euler’s 

equation and obtain the velocity field   as U  x . Since the boundary layer is 
 

very thin, it does not affect the outer flow solution. 

- With  some   known   starting  profile  x  xs  u  us  y  ,  solve  the  Eq. 

(5.8.10) with no-slip  conditions at  the wall   y  0   u  v  0 and known 
 

outer flow condition at the edge of the boundary layer  y    u  U (x)

- After solving Eq. (5.8.10), one can obtain all the boundary layer parameters 

such as displacement and momentum thickness. 
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Even though the boundary layer equations (Eq. 5.8.10) and the boundary conditions 

seem to be simple, but no analytical solution has been obtained so far. It was first 

solved numerically in the year 1908 by Blasius, for a simple flat plate. Nowadays, one 

can solve these equations with highly developed computer tools. It will be discussed  

in the subsequent section. 

 

Fig. 5.8.3: Boundary layer calculations: (a) Initial condition and flow domain; (b) Effect of centrifugal force. 

 

 

Limitations of Boundary Calculations 

- The boundary layer approximation fails if the Reynolds number is not very 

large. Referring to Eq. (5.8.9), one can interpret 

 L  0.001  ReL  10000 . 
 

- The assumption of zero-pressure gradient does not hold good if the wall 

curvature is of similar magnitude as of  because of centrifugal acceleration 

(Fig. 5.8.3-b). 

- If the Reynolds number is too   high ReL   10  , then the boundary layer   does 

not remain laminar rather the flow becomes transitional or turbulent. 

Subsequently, if the flow separation occurs due to adverse pressure gradient, 

then the parabolic nature of boundary layer equations is lost due to flow 

reversal. 
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Module 5 : Lecture 9 

VISCOUS INCOMPRESSIBLE FLOW 

(External Flow – Part III) 
 
 

Laminar Boundary Layer on a Flat Plate 

Consider a uniform free stream of speed  U 




that flows parallel to an infinitesimally 
 

thin semi-infinite flat plate as shown in Fig. 5.9.1(a). A coordinate system can be 

defined such that the flow begins at leading edge of the plate which is considered as 

the origin of the plate. Since the flow is symmetric about x-axis, only the upper half of 

the flow can be considered. The following assumptions may be made in the 

discussions; 

- The nature of the flow is steady, incompressible and two-dimensional. 

- The Reynolds number is high enough that the boundary layer approximation is 

reasonable. 

- The boundary layer remains laminar over the entire flow domain. 
 

Fig. 5.9.1: Boundary layer on a flat plate: (a) Outer inviscid flow and thin boundary layer; (b) Similarity behavior of 

boundary layer at any x-location. 

 

 

The outer flow is considered without the boundary layer and in this case, U   is a 

constant so that  U 
dU

 
dx 

 

 0 . Referring to Fig. 5.9.1, the boundary layer equations  and 

its boundary conditions can be written as follows; 

u 
 
v 

 0;
 
 

u  u  
2
u 

u  v    ; p 
 0

 
 

(5.9.1) 
x y x y y

2 
y 

 

Boundary conditions: 

 

u  0 at 

 

 
y  0 and 

 
u  U ; 

du 
 0 at 

dy 

 

 
y  






(5.9.2) 

v  0 at y  0  and u  U for all y at  x  0 
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 y 

 
 

No analytical solution is available till date for the above boundary layer equations. 

However, this equation was solved first by numerically in the year 1908 by 

P.R.Heinrich Blasius and commonly known as Blasius solution for laminar boundary 

layer over a flat plate. The key for the solution is the assumption of similarity which 

means there is no characteristics length scale in the geometry of the problem. 

Physically, it is the case for the same flow patterns for an infinitely long flat plate 

regardless of any close-up view (Fig. 5.9.1-b). So, mathematically a similarity  

variable   can be defined that combines the independent variables x and y into a 

non-dimensional independent variable. In accordance with the similarity law, the 

velocity profile is represented in the functional form; 

u 
 F  x, y, ,U   F  

U 
 u  U F   (5.9.3) 

With  the  order  of  magnitude  analysis,  the  thickness  of  the  boundary  layer      is 
 

interpreted  as   
 x   

.  Based  on  this  analogy,  Blasius  set the non-dimensional 
U 

similarity variable in the following functional form; 
 

  y 
U

  
d 

  



and d 

 
U 

 
(5.9.4) 

 x dx 2x dy  x 

Now, let us introduce the stream function   for the two-dimensional flow. 
 

u  

y 

 

and v   



x 

 

(5.9.5) 

 

The stream function can be obtained through integration of Eq. (5.9.5) and using the 

results of Eqs (5.9.3 & 5.9.4). 

  u dy  U F  
 x

d 
U 

U x  F   d  U x f  


(5.9.6) 

Again, differentiate Eq. (5.9.6) with respect to y and use Eq. (5.9.4) to obtain the x- 

component of velocity profile within the boundary layer as function   (Fig. 5.9.2). 

u  
 

   U x 
 f    

 U f     
u 
 f   (5.9.7) 

  
y    U 
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 x 

 

 

 

Fig. 5.9.2: Blasius profile for a laminar boundary layer over a flat plate. 

 

 

The y-component of velocity profile can be obtained by differentiating stream  

function with respect to x and substituting the results from Eq. (5.9.4 & 5.9.6). 

v   
  

  
  
  U x f     

 1 U 
f   

U x 
 f   

x x   


  
  


(5.9.8) 

  
 1 U f    

1
 

U 
 f  

 
 

1
 

U 
 f    f   

2 x 2 x  
2 x  

 

2 x 
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

x 




Now, let us calculate each term of Eq. (5.9.1) from the velocity components obtained 

from Eqs (5.9.7 & 5.9.8). 

u 
  

U  f  ; 
u 

 U f   
U 

; 
2
u U 

2 

2 

f  
x 2x y  x y  x 

(5.9.9) 

u  U f  ; v  
1
 

2 

U 
 f    f  

Substitute each term of Eq. (5.9.9) in Eq. (5.9.1) and after simplification, the  

boundary layer equation reduces to Blasius equation expressed in terms of similarity 

variable. 

2 f   f  f   0  f   
1 

f f   0  
2 

(5.9.10) 

 

Table 5.9.1: Solution of Blasius laminar flat plate boundary layer in similarity variables 
 

  y 
U 

 
 x 

f   f    
u
 

U 

f  

0 0 0 0.3321 

1 0.1656 0.3298 0.3230 

2 0.650 0.6298 0.2668 

3 1.3968 0.8460 0.1614 

4 2.3057 0.9555 0.0642 

5 3.2833 0.9915 0.0159 

6 4.2796 0.9990 0.0024 

7 5.2792 0.9999 0.0002 

8 6.2792 1.0 0 

9 7.2792 1.0 0 

10 8.2792 1.0 0 
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In  certain  cases,  one  can define 

 
(5.9.10) takes the following form; 

  y 
U 

2 x 
and   2U x f  



for  which Eq. 

f   f  f   0 (5.9.11) 
 

The Blasius equation is a third-order non-linear ordinary differential equation for 

which the boundary conditions can be set using Eq. (5.9.2). 

y  0; u  0    0, f   0 

y  0; v  0    0, f  f   0 (5.9.12) 

y  ; u  U    , f   1 
 

The popular Runge-Kutta numerical technique can be applied for Eqs (5.9.11 & 

5.9.12) to obtain the similarity solution in terms of   and some of the values are  

given in the Table 5.9.1. 

 

Estimation of Boundary Layer Parameters 

Boundary layer thickness   : It is defined as the distance away from the wall at 

which the velocity component parallel to the wall is 99% of the fluid speed outside 

the boundary layer. From Table 5.9.1, it is seen  that f    
u
 

U 
 0.99  at   5 . So, 

replacing  y  

layer thickness; 

in Eq. (5.9.4), one can obtain the following expression for   boundary 

  
5
 
   

5x   
 

5x  
 


5 
and 

 
1 

  x 2
 

 
(5.9.13) 

U Ux Rex x Rex 

 x 

At this point, the transverse velocity can be calculated from Eq. (5.9.8). 

For   5, f    3.2833 and f    0.9915 

 v  
     

1   f    f    
  1 

  f    f     
v  
 

0.84 (5.9.14) 

U 
2  

Ux 


2  Rex U Rex 
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



 

Displacement thickness    : It is the distance that a streamline just outside of the 

boundary layer is deflected away from the wall due to the effect of the boundary  

layer. Mathematically, it can be represented in terms of transformed variable using  

Eq. (5.9.4). 

 
 u 

  
 1  dy 

 x 


 1 f   d     x   f  


(5.9.15) 

0  U  U   0 U 

It may be seen from the Table 5.9.1 that for all values of   5 , the functional    value 
 

of Eq. (5.9.15) is always a constant quantity i.e.     f    1.72 . So, Eq. (5.9.15) 

can be simplified in terms of Reynolds number; 

 
  

1.72 
(5.9.16) 

x Rex 

Momentum thickness    : It is defined as the loss of momentum flux per unit width 
 

divided by U 
2 
due to the presence of the growing boundary layer. Mathematically, it 

 

can be represented in terms of transformed variable using Eq. (5.9.4). 

   


   
u  u   x 1 dy 



 f   1 f   d (5.9.17) 
     

0 U  U  U   0 

This integration is carried out numerically from 

and the results give rise to the following relation; 

  0 to  any arbitrary point    5 

   
 

0.664 
(5.9.18) 

x Rex 
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Comparing the Eqs (5.9.13, 5.9.16 & 5.9.18), it is seen that the all are inversely 

proportional to the square root of Reynolds number except the difference in 

magnitude.  The  value  of         
is  about  34%  of       while         

turns  out  to     be 

approximately 13% of   at any x-location (Fig. 5.9.3). 
 

Fig. 5.9.3: Boundary layer thickness, displacement thickness and momentum thickness for a flat plate. 

 

 

In order to correlate the data for variety of boundary layers under different 

conditions, a dimensionless profile shape factor is often defined as the ratio of 

displacement thickness to momentum thickness. For a flat plate laminar boundary 

layer, 

H  

  2.59 (5.9.19) 

 

Skin friction coefficient c f   : Analogous to friction factor in a duct/pipe flows, a non- 

dimensional parameter is defined for boundary layer flow as the skin-friction 

coefficient (Fig. 5.9.4). It relates the shear stress at the wall  w  to the free stream 

dynamic pressure. 

c     w   y  
y 0 



 U   f    y 



y 0 

f 1 2 U 2 1 2 U 2 1 2 U 2 

(5.9.20) 
 U   U  x 

 f 
1 2 U 2 

0 
0.664 

Re 
x 


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From Eqs (5.9.18 & 5.9.20), it is observed that the non-dimensional momentum 

thickness is identical to the skin friction coefficient. Further, the wall shear stress can 

be estimated from Eq. 5.9.20. 

    
0.664 

U 2
 

 
3 


 0.332U 2

 

 
(5.9.21) 

w 
2 Ux x 

 

It may be noted here that shear stress decreases with increase in the value of x because 

of the increase in the boundary layer thickness and decrease in velocity gradient at the 

3 

wall along the direction of x. Also,  w varies directly with U  2
 

case for a fully-developed laminar pipe flow. 

not as U   which is the 

 

 
 

Fig. 5.9.4: Decay of wall shear stress due to decrease in slope at the wall. 
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Drag coefficient cd   : The effect of skin friction/wall shear stress is to retard the free 

stream flow. It is quantified by skin friction coefficient at a particular x-location on  

the flat plate and is expressed by Eq. (5.9.20). When this parameter is integrated over 

the entire  length of  the  plate, then total drag coefficient  is obtained  (Fig. 5.9.5).   In 

terms of free stream parameter and wall shear stress, cd is quantified as follows; 
 

L L 

c  
  D 

 
1 
 c  dx  

0.664 1.328 
U  L  x

1 2 
dx  (5.9.22) d 

1 2 U 
2 
A L 

f 
L Re 

0 0 L 
 

Comparing Eqs (5.9.18 & 5.9.22), it is seen that skin friction drag coefficient for a flat 

plate is directly proportional to the values of   
evaluated at the trailing edge of the 

plate. 

0.664 L 1.328 2   
       

x L    
; cd     x L  (5.9.23) 

ReL ReL 
L 

 

Fig. 5.9.5: Variation of skin friction coefficient along the length of a flat plate. 
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Module 5 : Lecture 10 

VISCOUS INCOMPRESSIBLE FLOW 

(External Flow – Part IV) 

 
Momentum Integral Boundary Layer Relation for a Flat Plate 

One of the important aspects of boundary layer theory is the determination of drag 

caused by the shear force on the body. With respect to flat plate, the drag coefficient  

is estimated through numerical solution of Blasius equation which is a third-order 

non-linear ordinary differential equation. In order to get rid of the differential 

equation, there is an alternative method by which the exact prediction of drag 

coefficient is possible. The momentum integral method is one of the alternative 

techniques by which boundary layer parameters can be predicted through control 

volume analysis. 

Consider a uniform flow past a flat plate and the growth of boundary layer as 

shown in Fig. 5.10.1. A fixed control volume is chosen for which the uniform flow 

enters at the leading edge at the section ‘1’. At the exit of the control volume (section 

‘1’), the velocity varies from zero (at the wall) to the free stream velocity U  at the 

edge of the boundary layer. It is assumed that the pressure is constant throughout   the 

flow field. The width and height of the control volume are taken as 

respectively. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.10.1: Control volume analysis for the flat pate. 

b and h , 

 
 

The drag force  D on the plate can be obtained when the x-momentum equation    is 
 

applied to the steady flow of fluid within this control volume. It is same as the 

integration of wall shear stress  w  along the length of the plate (Fig. 5.10.1). 
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 

 
 

 Fx   D   wdA   l  wdx and 

 Fx   U U  dA   
1 2 

u
2 
dA 

(5.10.1) 

This equation leads to the expression for drag force as given below; 
 



D  U 
2
bh  l u

2 
dA 

0 
 

Now, write the mass conservation equation, for the sections ‘1’ and ‘2’. 

 
(5.10.2) 

 

 

Uh  u dA  U 
2
bh  bU u dA (5.10.3) 

0 0 
 

The expression for drag force can be obtained by combining Eqs (5.10.2 & 5.10.3). 
 



D  b u U  u  dA 
0 

 

Now, recall the expression for momentum thickness; 

 
(5.10.4) 

 
 

  
 

u 
1 

u  
dy  U 2    u U  u  dA (5.10.5) 

0 
U  U  0 

So, Eq. (5.10.4) can be rewritten as, 

 
D  bU 

2   
dD 

 bU 
2  d 




(5.10.6) 
dx dx 

dD 
It  follows  from  Eqs  (5.10.1) that 

 
obtained through Eq. (5.10.6). 

 b w 

dx 
so  that  the  wall-shear  stress  can be 

    U 
2  d 




(5.10.7) 
w 

dx 

The usefulness of Eq. (5.10.7) lies in the ability to obtain wall shear stress from the 

velocity layer profile. It is known as the momentum-integral relation. Moreover, this 

equation is valid for laminar as well as turbulent flows. 




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 

2 
dY 



 
 

Solution of Momentum Integral Relation 

With the knowledge of a velocity profile within the boundary layer, the momentum 

integral equation can be used to obtain all the boundary layer parameters. In general,  

it is appropriate to assume certain velocity from the experimental data. Thus, the 

accuracy of the results depends on how closely the assumed profile approximates to 

the actual profile. Let us consider a general velocity profile in a boundary layer; 

u 
 g Y  for  0  Y  1 and 

u  
 1 for Y  1 (5.10.8) 

U U 

Here, the dimensionless parameter  Y   varies from 0 to 1 across the boundary  

layer and one can assume the dimensionless function of any shape. Let is impose the 

boundary conditions and write the functions; 

y  0 

y  

  g Y   0, u  0 

  g Y   1, u  U , 

 

dg dY   0 

 

(5.10.9) 

 

For a given function g Y  , one can calculate the drag force on the plate from Eq. 

(5.10.4). 

 1 D  b u U  u  dA  bU 2 g Y  1 g Y  dY  bU 2 C 
 

 

or, 

   
0 0 

dD 
 bU 

2
C 
 d  

 b



1 

(5.10.10) 

dx 
1  

dx 
 w

 
 

The wall shear stress can also be obtained in the following form; 
 

     
 u  

 
 U  dg  

 
 U  

C
  (5.10.11) 

w          2 

 y y 0       dY Y 0      




Here, 

1 

C1    g Y  1 g Y  dY 
0 

 

is  a  dimensional  constant  and  is  evaluated  with 

 

 dg 
assumed velocity profile and C    

 Y 0 

. Combining the Eqs (5.10.10 &  5.10.11) 

and integrating the resulting expression, one can obtain the following expression; 
 

 d  
  

  C2 
 

dx
  

 
 2C2   C1 

 
(5.10.12) 

  
   U  C1  




x Rex 

 

Substituting Eq. (5.10.12) back into Eq. 5.10.11, the expression of  w is obtained; 
 

CC 
3 


    1    2  U 2    (5.10.13) 

w 
2 x 
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0 

 
 

The dimensionless local skin-friction coefficient is obtained as, 
 

c f  
 w 


1 2 U 

2
 

2C1C2 

Re 

 

(5.10.14) 

x 
 

For a flat plate, of certain length l  and width b , the net friction drag is often 

expressed in terms of friction drag coefficient  CD f   . 
l 

b wdx 
l CC 

 

C 
  D 

  0  
1 
 c dx  C  

8  1    2 (5.10.15) 
D f 1 2 U 2 bl 1 2 U 2 bl l 

f D f 
 Rel 

 

It  may  be  observed  from  the  above  analysis  that  the  functional  dependence    of 

 and  w on the physical parameters is the same for any assumed velocity profile 

while the constants are different. 


Rex  

x 
2C2 C1 ;  c f Rex   2C1C2 ; CDf Rel    8C1C2 (5.10.16) 

Several velocity profiles may be assumed for boundary layer as shown in Fig. 5.10.2. 

The more closely assumed shape with the experimental data for a flat plate is the 

Blasius profile. The non-dimensional constant parameters in Eq. (5.10.16) can be 

evaluated through the momentum-integral results and given in the Table 5.10.1. 

 

Table 5.10.1: Momentum integral estimates for a laminar flow velocity profiles 
 

Nature of 

velocity profile 

Equation  
Re 

x
 x 

c f Rex CDf Rel 

Blasius u  
  f 

 y 

U 
   

5 0.664 1.328 

Linear u 
 

y 
U 

3.46 0.578 1.156 

Parabolic 2 

u  
 

2 y 
 
 y 

U  
 
 



 

5.48 0.73 1.46 

Cubic 3 

u  
 

3  y  
 

1  y 
U 2 

 
 
 

2 
 
 



   

4.64 0.646 1.292 

Sine wave u  
 sin 

  y 

U  2 
    

4.79 0.655 1.31 
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Fig. 5.10.2: Approximate boundary layer profile for momentum integral estimates. 
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5 

 
 

Module 5 : Lecture 11 

VISCOUS INCOMPRESSIBLE FLOW 

(External Flow – Part V) 

 
Turbulent Flat Plate Boundary Layer 

A laminar boundary layer over a flat plate eventually becomes turbulent over certain 

range of Reynolds number. There is no unique value pf Reynolds number, for this 

change to happen. It mainly depends on the free stream turbulence and surface 

roughness parameters. With a very fine polished wall and with a quiet free stream,  

one can delay the transition. A controlling parameter such as the critical Reynolds 

number  of  transition  Rex ,CR  may  be  defined.  On  a  flat  plate  with  a  sharp  leading 

edge in a typical free stream air flow, the transition occurs between the Reynolds 

number ranges of 2 10
5  

to 310
6 
. So the transitional Reynolds number is  normally 

 

taken as Rex,CR   510 . 
 

The complex process of transition from laminar to turbulent flow involves the 

instability in the flow field. The small disturbances imposed on the boundary layer 

flow will either grow (i.e. instability) or decay (stability) depending on the location 

where the disturbance is introduced. If the disturbance occurs  at a  location where  

Rex   Rex,CR , then the boundary layer will  return to laminar     flow  at  that  location. 

Disturbances  imposed  on locations Rex    Rex,CR will  grow  and  the boundary layer 
 

flow becomes turbulent from this location. The transition to turbulence involves 

noticeable change in the shape of boundary layer velocity profile as shown in Fig. 

5.11.1. As compared to laminar profiles, the turbulent velocity profiles are flatter and 

thicker at the same Reynolds number (Fig. 5.11.2). Also, they have larger velocity 

gradient at the wall. 

There is no exact theory for turbulent flat plate flow rather many empirical 

models are available. To begin with the analysis of turbulent boundary layer, let us 

recall the momentum-integral relation which is valid for both laminar as well as 

turbulent flows. 

   x  U 
2 d 

 (5.11.1) 
w 

dx 


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Fig. 5.11.1: Comparison of laminar and turbulent boundary layer profiles for flat plate. 

 

Fig. 5.11.2: Comparison of laminar and turbulent boundary layer profiles for flat plate. 
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

 





 

 
 

In order to obtain the momentum thickness in Eq. (5.11.1), it is desired to know 

the velocity profile. Prandtl suggested the power law approximation for skin friction 

coefficient and one-seventh power law for velocity profile which is considered as very 

good approximations for flat plates. 

c f    0.02 Re  
1 

u  y 7 u 

 

(5.11.2) 
  

U   
for y   and  1 for 

U 
y  

The approximate turbulent velocity profile shape given by Eq. (5.11.2) leads to the 

fact that the slope   y is infinite at the wall which is not meaningful physically. 
y 0 

 

However, the large slope leads to a very high skin friction on the surface of the plate  

as compared to the laminar flow under similar conditions. With this approximate 

profile, the momentum thickness can be easily evaluated: 
 
    1 7 




     
1 7     

   
    

y  y 1   dy   
7 
 (5.11.3) 


0  



   72 

From the definition of skin friction coefficient and using the Eq. (5.11.1), the results 

are rewritten as below; 

c   
 w  x 

 2 d   
d   7 

 2 (5.11.4) 
f 1 2 U 2 

   

dx dx  72 


Substituting Eq. (5.11.4) in Eq. (5.11.2), separating the variables and integrating the 

resulting expression by assuming   0 at x  0 , the following important relation is 

obtained for boundary layer thickness. 

Re   0.16 Re 
6 7    

 
  


 0.16 (5.11.5) 

 x
 x

 Rex 


1 7  

1 6
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



L 

x 

 
 

It may be observed that the thickness of a turbulent boundary layer increases    as x6 7  

while  it  increases as x
1 2 

for  a  laminar  boundary  layer.  It  means  that  a turbulent 

boundary layer grows at a faster rate compared to that of a laminar boundary layer.  

Eq. (5.11.5) is the solution of a turbulent boundary layer because all the boundary 

layer parameters can be obtained from this equation as given below; 

- Displacement thickness, 

    1 7  

  



1 

u  
dy 

1 
 y   dy  



 
 1  0.16x  

 
 0.02 

 
U 
    

8 
 

8 
 
Re 


1 7  

 
 x Re 


1 7  (5.11.6) 

0   0     
    

x x 

- Momentum thickness, 
 

  
  

7  
 

 7   0.16 x 
 

  
0.016  

 


(5.11.7) 

72 72  

Rex
 


1 7  


 x Rex 


1 7  

- Turbulent shape factor for flat plate 

H  



 1.25 

 
(5.11.8) 

 

- Skin friction coefficient, 
  1 6 








1 6
6 7 






0.027 

c f    0.02 Re  
    

 0.02  0.16 Re  

Rex 
1 7  

(5.11.9) 

 

- Wall shear stress, 

 0.027 0.01351 7  6 7
U 

13 7
 

c    w       (5.11.10) 
f 1 2 U 2 Rex 


1 7 w x1 7  

 

- Drag coefficient, 

1 
L 

 
 

0.031 

cd    c f dx 
0 

 
1 7  

ReL 
(5.11.11) 




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These are some basic results of turbulent flat plate theory. The flat plate analysis for a 

Blasius laminar boundary layer and turbulent boundary layer is summarized in Table 

5.11.1. 

Table 5.11.1: Comparative analysis of laminar and turbulent boundary layer 

flow over a flat plate 

 
Parameters Laminar 

(Blasius solution) 

Turbulent 

(Prandtl approximation) 

Boundary layer 

thickness 
 
 

5 

x Rex 

  
 

0.16 
x Re  

1 7 

 
x 

Displacement 

thickness 

  
1.72 


x Rex 

  
0.02 


x Re  

1 7 

 
x 

Momentum 

thickness 

  
0.664 


x Rex 

  
0.016 


x Re  

1 7 

 
x 

Shape factor  H   2.59 

 

 H   1.25 

 

Local skin 

friction 

coefficient 

c    
0.664 

f 

Rex 

c     
0.027 

f 

Re  
1 7 

 
x 

Wall shear 

stress 

0.3321 2 1 2
U 

3 2
 

 w   1 2  

x 

0.01351 7  6 7
U 

13 7
 

 w   1 7  

x 

Drag 

coefficient c    
1.328 

d 

ReL 

c     
0.031 

d 

Re  
1 7 

 
L 

 

Effect of Pressure Gradient on the Boundary Layer 

The analysis of viscous flow fields past an external body (such as flat plate) is 

essentially done by dividing the entire flow domain in two parts; outer inviscid flow 

and a boundary layer flow which is predominant in the thin region close to the surface 

of the plate. Depending on the nature of boundary layer (laminar/turbulent), the 

velocity profile and all other relevant parameters are determined. However, when the 

outer flow accelerates/decelerates, few interesting phenomena take place within the 
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 y   y  

 

 
 

boundary  layer.  If  the  outer  inviscid  and/or  irrotational  flow   accelerates, U  x


increases and  using Euler’s  equation, it may be  shown     that p  x decreases. The 
 

boundary layer in such an accelerating flow is formed very close to the wall, usually 

thin  and  is  not  likely to  separate.  Such  a situation  is  called  as favorable pressure 

gradient 
 dp 

 0 
 

.  In  the  reverse  case,  when  the  outer  flow decelerates, U  x
 

dx 


 

decreases  and p  x increases  leading  to  unfavorable/adverse  pressure   gradient 
 

 dp 
 0 

 
.  This  condition  is  not  desirable  because  the  boundary  layer  is usually 

 
dx 


 

thicker and does not stick to the wall. So, the flow is more likely to separate from the 

wall due to excessive momentum loss to counteract the effects of adverse pressures. 

The separation leads to the flow reversal near the wall and destroys the parabolic 

nature of the flow field. The boundary layer equations are not valid downstream of a 

separation point because of the reverse flow in the separation region. Let us explain 

the phenomena of separation in the mathematical point of view. First recall the 

boundary layer equation: 

u 
u  v 

u 
 U 

dU 


2
u dU 
 U  

1  (5.11.12) 
x y dx y

2
 dx  y 

 

When the separation occurs, the flow is no longer attached to the wall i.e.     u  v  0 . 

Then, Eq. (5.11.12) is simplified and is valid for either laminar/turbulent flows. 

  
 

 
2
u 

   


 U dU  
 

dp 
2 

wall wall 
dx dx 

(5.11.13) 
 

2
u 

or,  2  

 y  







wall 

  
1  dp 

 
 

dx 



From the nature of differential equation (Eq. 5.11.13), it is seen that the second 

derivative of velocity is positive at the wall in the case of adverse pressure gradient. 

At the same time, it must be negative at the outer layer   y      to merge smoothly 
 

with  the  main  stream flow U  x . It  follows that the second derivative must   pass 
 

through zero which is known as the point of inflection (PI) and any boundary layer 

profile in an adverse gradient situation must exhibit a characteristic S-shape. The 

effect of pressure gradient on the flat plate boundary layer profile is illustrated below 

and is shown in Fig. 5.11.3. 
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 dp Case I: Under the favorable pressure gradient conditions  0; dU 
2
u  0;  0  ,  

dx dx y
2 


 

the velocity profile across the boundary layer is rounded without any inflection   point 

(Fig. 5.11.3-a). No separation occurs in this case and      u approaches to U  x at the 
 

edge of the boundary layer. The wall shear stress   w 

other cases 

is the largest compared to  all 

 

 

Fig. 5.11.3: Effect of pressure gradient on the boundary layer for a flat plate. 
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w 



 

 

 
Case  II:  When  pressure  gradient  is zero,  dp 

 0;
 dU 

2
u  0;  0   ,  the  point of  

dx dx y
2 


 

inflection lies on the wall itself and there is no separation (Fig. 5.11.3-b). It implies a 

linear growth of u with respect to y for the boundary layer profile and is same as the 

Blasius boundary layer profile for the flat plate. The flow has a tendency to undergo 

the transition in the Reynolds number of about 310
6
. 

 

 dp Case III: In a situation of adverse pressure gradient ,  0; dU 
2
u  0;  0   , the  

dx dx y
2 





outer flow is decelerated. However, the value of  2
u 

 

y
2  must be negative when u 

 

approaches to U  x at the edge of the boundary layer. So, there has to be a point   of 
 

 
2
u inflection  0   somewhere in the boundary layer and the profile looks similar to 

 
y

2 
 

S-shape. In a weak adverse pressure gradient (Fig. 5.11.3-c), the flow does not 

actually separate but vulnerable to transition to turbulence even at lower Reynolds 

number of 10
5
. At some moderate adverse pressure gradient, the wall shear stress is 

 u 
exactly zero      

 y 

 

 

 
 

y 0 


 0  . This is defined as separation point as shown in Fig. 




5.11.3(d). Any stronger pressure gradient will cause back flow at the wall that leads to 

thickening the boundary layer, breaking the main flow and flow reversal at the wall 

(Fig. 5.11.3-e). Beyond the separation point, the wall shear stress becomes negative 

 w  0

flow. 

and the boundary layer equations break down in the region of separated 
 


