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Basic MIPS implementation

A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS
instruction set:

m The memory-reference instructions load word (1 w) and store word (sw)
m The arithmetic-logical instructions add, sub, AND, OR, and s1t
m The instructions brarnch equal (beq) and jurmp (), which we add last

This subset does not include all the integer instructions (for example, shift,
multiply, and divide are missing), nor does it include any floating-point instructions.

An Overview of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instructions is the
same, independent of the exact class of instruction. For every instruction, the first
two steps are identical:

1. Send the program cowurnter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the load word instruction, we need to read only one register, but
most other instructions require reading two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
{memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
MIPS instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers. The memory-reference instructions use the ALU
for an address calculation, the arithmetic-logical instructions for the operation
execution. and branches for comparison. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction
will need to access the memory either to read data for a load or write data for a
store. An arithmetic-logical or load instruction must write the data from the ALU
or memory back into a register. Lastly, for a branch instruction, we may need to
change the next instruction address based on the comparison; otherwise, the PC
should be incremented by 4 to get the address of the next instruction.
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An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross.
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The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor ("Mux") controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled
by the gate that "ANDs" together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
multiplexcr, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or
the cutput of the data memory (in the case of a load) for writing into the register file. Finally, the bottommeast multiplexor is used to determine
whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction
(for aload or store). The added control lines are straightforward and determine the operation performed at the ALU, whether the data memory

should read or write, and whether the registers should perform a write operation. The control lines are shown in color to make them easier to
see.
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A reasonable way to start a datapath design is to examine the major components

required to execute each class of MIPS instructions. Let’s start at the top by looking

at which datapath elements each instruction needs, and then work our way down

through the levels of abstraction. When we show the datapath elements, we will
(also show their control signals. We use abstraction in this explanation, starting
@S849be ICOMPWTER ARCHITECTURE UNIT-111
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shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address.
also shows the program counter (PC), which as we saw in
is a register that holds the address of the current instruction. Lastly, we will
need an adder to increment the PC to the address of the next instruction. This
adder, which is combinational, can be built from the ALU described in detail
in simply by wiring the control lines so that the control always
specifies an add operation. We will draw such an ALU with the label Add, as in
, to indicate that it has been permanently made an adder and cannot
perform the other ALU functions.
To execute any instruction, we must start by fetching the instruction fron
memory. To prepare for executing the next instruction, we must also incremen
the program counter so that it points at the next instruction, 4 bytes later.

shows how to combine the three elements from to form a datapatl
that fetches instructions and increments the PC to obtain the address of the nex
sequential instruction.

Now let’s consider the R-format instructions |
They all read two registers, perform an ALU operation on the contents of the
registers, and write the result to a register. We call these instructions either R-typ.
instructions or arithmetic-logical instructions (since they perform arithmetic o
logical operations). This instruction class includes add, sub, AND, OR,and s 1t

Instruction
address T
Instruction |—» —|PC|—— >Add Sum
Instruction S
memory
a. Instruction memory b.Program counter  c. Adder

Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.
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A portion of the datapath used for fetching instructions and incrementing

the program counter. The fetched instruction is used by other parts of the datapath.
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The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section B.8 of The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes
to the register file are edge-triggered, our design can legally read and write the same register within a clock
cycle: the read will get the value written in an earlier clock cyde, while the value written will be available
to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5
bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be performed by the
ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in

. We will use the Zero detection output of the ALU shortly to implement branches. The
overflow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.
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The two units needed to implement loads and stores, In addition to the
register file and ALU of , are the data memory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of
an invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit
input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the
data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is
used for writes. Although the write enable is not edge-triggered. our edge-triggered design could easily be
adapted to work with real memory chips. PR : i

CONTROL IMPLEMENTATION SCHEME
The ALU Control

The MIPS ALU in defines the 6 following combinations of four
control inputs:

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Depending on the instruction class, the ALU will need to perform one of these
first five functions. (NOR is needed for other parts of the MIPS instruction set not
found in the subset we are implementing.) For load word and store word instructions,
we use the ALU to compute the memory address by addition. For the R-type
instructions, the ALU needs to perform one of the five actions (AND, OR, subtract,
add, or set on less than), depending on the value of the 6-bit funct (or function) field
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Instruction Instruction Desired ALU control
opcode opearation ALU action Input
Lw 0C add 0010

load word 200X
SW Q0 stors word 20K add 0040
Branch equal 01 brarch equal 200CKX subtract 0110
Rtyps i€ add 100000 add 0010
Riype 10 subtract 100010 subtract 0110
Riyp= 1C AND 100100 AND 0000
Riype 10 oR 100104 OR 0001
Riyps 1C set on 'ess than 101040 set on less than 0111

How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we “don't care” about the value of the function code, and the funct field is shown as XXXXXX. When
the ALUOp value is 10, then the function code is used to set the ALU control input

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and
a 2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, lets identify the fields of an instruction and the control lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review

—m_m-
| _Awopt | Awopo | Fs [Fs P3| F2 [ Fi|Fo | operation
X X X X 0010

0 0 X X

X i X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
- b X X X 0 1 0 0 0000
1 X X X 0 1 0 1 0004
1 X X X 1 0 1 0 0111

The truth table for the 4 ALU control bits (called Operation). The inputsare the
ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don't-care entries have been added. For example, the ALUOp does not use the enceding 11, so the truth table
can contain entries 1X ard X1, rather than 10 and 01. Note that when the function field is used, the first 2
bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced with XX
m the truth table.
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Field | 0 l s l rt l rd l shamt I funct |
Bit positions 31:26 25:24 20:16 15:11 10:6 5.0

3. R-type instruction

Field I 350r 43 ] rs ] 14 | address I
Bit positions 31:26 25:21 20:16 15:0

D. Load or store instruction

Field I 4 [ rs ] rn [ address I
Bit positions 31:26 25:21 20:16 15:0

€. Branch instruction

| The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss shortly.
(a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions have three
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions
that we implement are add, sub, AND, OR, and s 1 t. The shamt field is used only for shifts; we will ignore it
in this chapter. (b) Instruction format for load (opcode = 35_) and store (opcode = 43_) instructions. The
register rs is the base register that is added to the 16-bit address field to form the memory address. For loads,
rt is the destination register for the loaded value. For stores, rt is the source register whose value should be
stored into memory. (c) Instruction format for branch equal (opcode =4). The registers rs and rt are the
source registers that are compared for equality. The 16-bit address field is sign-extended, shifted, and added
to the PC + 4 to compute the branch target address.

MemtoReg

Instruction [5:0} F
ALUOg

The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The control
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end
of every clock cycle: the branch control logic determines whether it is written with the incremented PC or the branch target address.
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The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite None. The register on the Write register input is
written with the value on the Write data input,
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the Instruction.
PCSre The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

can create timing problems.

The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element

for further discussion of this problem.)
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4
1
/ '. Branch
: [ | MemRaeod
‘h-\nnnl? ~2q {Controlt 24""‘”"7“2
LUO
\ T
\ I ALUSre
\ .;' RogWnite
Instruction [25-21) Read
ai m register 1 Read
Instructon [20-18] Reod data 1 7
Instruction || register 2 & s
31-0f M fwise  Resdlll. o Wayl |
instruction || |inetruction [15-11] | ¥ [7] register data2 M
memory |l¢—m» f 3 3
- x‘° L 2]
12 Registers
Instruction [15-0) 16 (gion | 22 |""ALU \
w \control,
o
Instruction [5-0} | I

Course Material (Lecture Notes)

Stgnal
Effect when deasserted Effect when asserted

The simple datapath with the control unit. |he input to the control unit s the 6 bit opcode ficld from the instruction,
The owtputs of the control wnit consist of three 1-bit signals that are used W control multiplexors (RegDst, ALUSr, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSec is now
a Jderived signal, ruther than one coming directly from the control unit. Thus, we drop the signal name in subsequent fgures,
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Finalizing Control

Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of | . The outputs are the control lines, and the input is the
6-bit opcode field, Op [5:0]. Thus, we can create a truth table for each of the outputs
based on the binary encoding of the opcodes.

shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion.

—mnnm

Inputs 0p5 0 1 0
Op4 0 0 O 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

Outputs RegDst 1 ¢ X b
ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1

The control function for the simple single-cycle implementation is
completely specified by this truth table. The top half of the table gives the combinations of input
signals that correspond to the four opcodes, one per column, that determine the control output settings.
(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op field.) The bottom
portion of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for
two different combinations of the inputs. If we consider only the four opcodes shown in this table, then we
can simplify the truth table by using don't cares in the input portion. For example, we can detect an R-format
instruction with the expression Op5 - OpZ, since this is sufficient to distinguish the R-format instructions
from 1w, sw, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes
are used in a full implementation.

AN OVERVIEW OF PIPELINING
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The same principles apply to processors where we pipeline instruction-execution.
MIPS instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.
4. Access an operand in data memory.

5. Write the result into a register.

Time between instruction,, i jinea

Time between instructions =
el Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up
from pipelining is approximately equal to the number of pipe stages; a five-stage
pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. Moreover,
pipelining involves some overhead, the source of which will be clearer shortly.
Thus, the time per instruction in the pipelined processor will exceed the minimum
possible, and speed-up will be less than the number of pipeline stages.

Load word (1 w) 200 ps 100 ps 200 ps 100 ps | 800 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (3dd, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR,s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no
delay.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution.
First, all MIPS instructions are the same length. This restriction makes it much
CopuYeL EORIPlHER AREmFTECTORESt Dingting stage and to decode thenpjp, fhe
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 15 bytes, pipelining is considerably more challenging. Recent implementations
of the x86 architecture actually translate x86 instructions into simple operations
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Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads must wait that have completed drying and are ready to
fold as well as those that have finished washing and are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one
instruction on an earlier one that is still in the pipeline (a relationship that does not
really exist when doing laundry). For example, suppose we have an add instruction
followed immediately by a subtract instruction that uses the sum ($s0):

add $s0, $t0, $t1
sub $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn’t write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don't need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connectec
by forwarding. Use the drawing in Figure 4.28 to represent the datapath during
the five stages of the pipeline. Align a copy of the datapath for each instruction
similar to the laundry pipeline in Figure 4.25.

200 800 1000

Time T T

add $s0, $t0, St1 m—c{ MEM F]

Graphical representation of the instruction pipeline, similar in spirit to
the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with
the abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: iF for
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register file read stage, with the drawing showing the register file being read; EX for the execution stage,
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data
memory: and WB for the write-back stage, with the drawing showing the register file being written. The
shading indicates the element is used by the instruction. Hence, MEM has 2 white background because add
does not access the data memory. Shading on the right half of the register file or memory means the element
is read in that stage, and shading of the left half means it is written in that stage, Hence the right half of ID is
shaded in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage
because the register file is written.
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PIPELINED DATAPATH AND CONTROL

shows the single-cycle datapath from Section 4.4 with the pipeline

stages identified. The division of an instruction into five stages means a five-stage
pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

L.

o W N

IF: Instruction fetch
ID: Instruction decode and register file read
EX: Execution or address calculation
MEM: Data memory access
WB: Write back
these five components correspond roughly to the way the data-

path is drawn; instructions and data move generally from left to right through the
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WE wnle pack

« Each step of the instruction can be mapped
onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control. but these are
data lines.)
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five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they
never move backward.

There are, however, two exceptions to this left-to-right flow of instructions:

m The write-back stage, which places the result back into the register file in the
middle of the datapath

m The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; these
reverse data movements influence only later instructions in the pipeline. Note that
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The pipelined version of the datapath in Figure 4,33, The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separates for example, the first is labeled 1F//D because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the
IF/ID register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32 bit PC
address. We will expand these registers over the course of this chapter. but for now the other three pipeline registers contain 128, 97, and 64
bits, respectively.
We show the instruction abbreviation 1w with the name of the pipe stage that is

active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of + shows the instruction being
read from memory using the address in the PC and then being placed in the
[F/1D pipeline register. The PC address is incremented by 4 and then written
back into the PC to be ready for the next clock cycle. This incremented
address is also saved in the IF/ID pipeline register in case it is needed later
for an instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction, passing
potentially needed information down the pipeline.
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2. Instruction decode and register file read: The bottom portion of
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer

everything that might be needed by any instruction during a later clock
cycle.

3. Execute or address calculation: shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EXMEM pipeline register.

4. Memory access: The top portion of | _ shows the load instruction
reading the data memory using the address from the EX/MEM pipeline
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

HANDLING DATA HAZARDS & CONTROL HAZARDS

Data Hazards: Forwarding~~ve‘rsus.Stablling

J8

Im\nm

. The pipelined datapath of » with the signals cted to the control portions of
the pipeline registers. The control values for the kst three stages are created during the instruction decode stage and then placed in the
ID/EX pipeline register. The control lines for cach pipe stage are used, and remaining control lines are then passed to the next pipeline stage.
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Let’s look at a sequence with many dependences, shown in color:

sub $2, $1.%3 # Register $2 written by sub

and $12,32.%5 # 1st operand($2) depends on sub
or $13,96.582 # 2nd operand($2) depends on sub
add $14,32,%2 # 1st($2) & 2nd($2) depend on sub

SwW $15,100(32) # Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the
first instruction. If register $ 2 had the value 10 before the subtract instruction and
=20 afterwards, the programmer intends that —20 will be used in the following
instructions that refer to register $2.

Time (in clock cycles) -
Vaeof CC1 C€C2 C€C3 (CC4 CCs CC6 CC7 CC8 CCO
regster$2: 10 10 10 10 10-20 -20 -2 -2 -2

and $12, §2, 85

or $13, 86, 52

add $14, $2,52

sw $15, 100(52)

Pipelined dependences In a five-instruction sequence using simplified datapaths to show the
dependences. All ths dependent actions are shown in color. and “CC 17 at the top of the figure means clock cyde 1. The first instruction
writes into $ 2, and all the following instructions read $ 2. This register is written in clock cycle 5. so the proper value is unavailable before clock
rycle 5. (A read of a register during a dock cycle returns the value written at the end of the first half of the cydle, when such a write occurs.) The
tolored lines from the top datapath to the Jower ones show the dependences. Those that must go backward in time 2re pipeline data hazands.
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Data Hazards and Stalls

one case where forwarding cannot save the day is when

an instruction tries to read a register following a load instruction that writes

the same register. | _ illustrates the problem. The data is still being read

from memory in clock cycle 4 while the ALU is performing the operation for the

following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard defection unit. It

operates during the ID stage so that it can insert the stall between the load and its

Time (in clock cycles)

cc1 C€c2 CC3 cc4 C©Cs5 CC6 CC7T  CC8  CCO

Program
execution

order
(in instructions)

Iw $2, 20(81)

and §4, 82,85

or $8, 52, $6

add §9, 34, §2

st $1, 86, §7

A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit,

Control Hazards
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Time (in clock cycies)

CC1 CcC2 CC3 CcC4 CCs cCe CC7 ccs CcCo

Program
axacution
order

(in instructions)

| 40 beq $1, 83, 28

—

|44 and $12, $2, 85
43 or $13, $6, $2
| 52 add $14, $2, $2

—

372w $4, 50(S7)

The impact of the pipeline on the branch Instruction. The numbers 1o the lefl of the instruction (40, 44, )
are the addresses of the instructions. Since the branch instruction decides whether 10 branch in the MEM stage—clock cycle 4 for the beg
instruction above—the three sequential instructions that follow the branch will be fetched and hoain srecution Withont intervention. thosw
three following instructions will begin execution before be q branches to

Assume Branch Not Taken

stalling until the branch is complete is too slow. One
improvement over branch stalling is to predict that the branch will not be taken
and thus continue execution down the sequential instruction stream. If the branch
is taken, the instructions that are being fetched and decoded must be discarded.
Execution continues at the branch target. If branches are untaken half the time,
and if it costs little to discard the instructions, this optimization halves the cost of
control hazards.

To discard instructions, we merely change the original control values to 0s, much
as we did to stall for a load-use data hazard. The difference is that we must also
change the three instructions in the IF, ID, and EX stages when the branch reaches
the MEM stage; for load-use stalls, we just change control to 0 in the 1D stage and
let them percolate through the pipeline. Discarding instructions, then, means we
must be able to flush instructions in the IF, ID, and EX stages of the pipeline.

Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch. s
ER84%r; GR %T%M&EE%% PNLTdHnch is selected in the MERgge 19
stage, but if we move the branch execution earlier in the pipeline, then fewer
instructions need be flushed. The MIPS architecture was designed to support fast
single-cycle branches that could be pipelined with a small branch penalty. The
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Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case,
we predict that branches are untaken, flushing the pipeline when we are wrong. For
the simple five-stage pipeline, such an approach, possibly coupled with compiler-
based prediction, is probably adequate. With deeper pipelines, the branch penalty
increases when measured in clock cycles. Similarly, with multiple issue (see Section
4.10), the branch penalty increases in terms of instructions lost. This combination
means that in an aggressive pipeline, a simple static prediction scheme will probably
waste too much performance. As we mentioned in Section 4.5, with more hardware
it is possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch was
taken the last time this instruction was executed, and, if so, to begin fetching new
instructions from the same place as the last time. This technique is called dynamic
branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This is the simplest sort of buffer; we don’t know, in fact, if the prediction is
the right one—it may have been put there by another branch that has the same
low-order address bits. However, this doesn’t affect correctness. Prediction is just
a hint that we hope is correct, so fetching begins in the predicted direction. If the
hint turns out to be wrong, the incorrectly predicted instructions are deleted, the
prediction bit is inverted and stored back, and the proper sequence is fetched and
executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than once,
when it is not taken. The following example shows this dilemma.

| Taken |

Not taken y =
( Pradict taken )
Taken = >
— =
Not taken Taken
Not taken =

The states In a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. ‘The 2 bits are used
10 encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of
its range as the division between taken and not taken,
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EXCEPTIONS

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using
the term exception to refer to any unexpected change in control flow without
distinguishing whether the cause is internal or external; we use the term interrupt
only when the event is externally caused. Here are five examples showing whether
the situation is internally generated by the processor or externally generated:

From whore? | WIPS torminoiogy

/0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific
situation that causes an exception to occur. Accordingly, we will return to this
topic in Chapter 5, when we will better understand the motivation for additional
capabilities in the exception mechanism. In this section, we deal with the control
implementation for detecting two types of exceptions that arise from the portions
of the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often
on the critical timing path of a processor, which determines the clock cycle time
and thus performance. Without proper attention to exceptions during design of
the control unit, attempts to add exceptions to a complicated implementation
can significantly reduce performance, as well as complicate the task of getting the
design correct.

How Exceptions Are Handled in the MIPS Architecture

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. We'll use
arithmetic overflow in the instruction add $1, $2, $1 as the example exception
in the next few pages. The basic action that the processor must perform when an
exception occurs is to save the address of the offending instruction in the exception

program counter (EPC) and then transfer control to the operating system at some
specified address.
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A second method, 1s 10 use vectored mnterrupts, In a vectored interrupt, the
address to which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might
define the following two exception vector addresses:

Undefined instruction 8000 0000,2
Arithmetic overflow 8000 0180,!

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or eight instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause.
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The datapath with controls to handle exceptions. The key additions include a new input with the value 8000 0180,
in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save
the address of the instruction that caused the exception. The 8000 0180, input to the multiplexor is the initial address to bagin fetching
instructions in the event of an exception. Although not shown, the ALU overflow signal is an input to the control unit.
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